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I
EXECUTIVE SUMMARY

Many physical phenomena are described by Mathematical models, which are
written through partial differential equations. Solutions of partial differential
equations are used explain physical phenomena. Therefore, there is interest in
finding exact solution of partial differential equations. Numerical methods are
powerful, but they only give approximate solutions. Approximate solutions do
not allow analyzing properties of equations. For studying properties of models
one needs to know exact solutions of partial differential equations. The way to
get exact solutions of partial differential equations is not easy.

One of methods for constructing exact solutions is group analysis. In the
thesis we apply group analysis method to class of dispersive models. These
models include a nonlinear one-velocity model of bubbly fluid at small volume
(Iordanskii-Kogarko-Wingarden model) and the dispersive shallow water model
(Green —Nagdi model)

Research objectives

The research is devoted to application of group analysis to one-dimensional
nonisentropic equations of fluid with internal inertia. The objectives of research
are follows.

1. To find equivalence Lie group
2. To find admitted Lie group

Scope and limitations of the study

The research will deal with equations of fluids where the function

W depends on p, p and S
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Research procedure

The research procedure to be used in this research consists of a number of steps
which can briefly be described as follows.

1. Construct determining equations of the equivalence Lie group.
2. Construct determining equations of the admitted Lie group and solve

them.

Expected results

The expect outcome of this research project is classification of one-dimensional
nonisentropic equations of fluid with «nternal inertia, where the function

W depends on p, p and S
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Abstract

In this research, a systematic application of the group analysis method for
modeling fluids with internal inertia is presented. The equations studied
include models such as the non-linear one-velocity model of a bubbly fluid
(with incompressible liquid phase) at small volume concentration of gas
bubbles (Jordanski (1960), Kogarko (1961), Wijngaarden (1968)), and the
dispersive shallow water model (Green \& Naghdi (1976),Salmon (1988)).
These models are obtained for special types of the potential function

W(p, p,S)(Gavrilyuk \& Teshukov (2001)).The main feature of the present
research is the study of the potential functioﬁs with W.=0. The group

classification separates these models into 73 different classes.
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CHAPTER I

INTRODUCTION

Symmetry is a fundamental topic in many areas of physics and mathemat-
ics (Golubitsky and Stewart, 2002), (Marsden and Ratiu, 1994), (Olver, 1993)..
Whereas group-theoretical methods play a prominent role in modern theoretical
physics, a systematic use of them in constructing models of continuum mechanics
has not been widely applied yet (Ovsiannikov, 1994). The present paper tries to
help to fill this niche.

This manuscript is focused on group classification of a class of dispersive

models (Gavrilyuk and Teshukov, 2001)*

y+ pdiv(u) =0, pu+Vp=0, S=0,
p+ pdiv(u) pu+ Vp (L)

w aw oW - W
p=p% AW = p(G7 - &G ) s d(Gru)) v W,

where ¢ is time, V is the gradient operator with respect to space variables, p is the
fluid density, u is the velocity field, W (p, p, S) is a given potential, dot” denotes
the material time derivative: f = % = f; +uVf and % denotes the variational
derivative of W with respect to p at a fixed value of u. These models include the
non-linear one-velocity model of a bubbly fluid (with incompressible liquid phase)
at small volume concentration of gas bubbles (Ibragimov,1999), (Kogarko, 1961),
(Wijngaarden,1968), and the dispersive shallow water model (Green & Naghdi
(1975) , Salmon (1998)

Equations (4.1) were obtained in (Gavrilyuk and Teshukov, 2001), using

*See also references therein.



the Lagrangian of the form
1 s _
L= lul® = W(p,4,5).

This is an example of a medium behavior dependent not only on thermodynamical
variables but also on their derivatives with respect to space and time. In this
particular case the potential function depends on the total derivative of the density
which reflects the dependence of the medium on its inertia. Another example of
models where the medium behavior depends on the derivatives is constructed in

(Gavrilyuk and Shugrin,1996) by assuming that the Lagrangian is of the form:

1
L= 5!‘&'2 — E(p? IVPI,S)

One of the methods for studying properties of differential equations is group

analysis(Ovsiannikov, 1978), (Olver, 1986), (Ibragimov, 1999). This method is
| a basic method for constructing exact solutions of partial differential equations.
A wide range of applications of group analysis to partial differential equations
are collected in (Ibragimov, 1994), (Ibragimov, 1995), (Ibragimov, 1996). Group
analysis, besides facilitating the construction of exact solutions, provides a regular
procedure for mathematical modeling by classifying differential equations with
respect to arbitrary elements. This feature of group analysis is the fundamental
basis for mathematical modeling in the present paper.

An application of group analysis employs several steps. The first step is a
group classification with respect to arbitrary elements. An algorithm of the group
classification is applied in case where a system of differential equations has arbi-
trary elements in form of undefined parameters and functions. This algorithm is
necessary since a specialization of the arbitrary elements can lead to an extension
of admitted Lie groups. Group claséiﬁcation selects the functions W(p, p, S) such

that the fluid dynamics equations (4.1) possess additional symmetry properties



extending the kernel of admitted Lie groups. Algorithms of finding equivalence
and admitted Lie groups are particular parts of the algorithm of the group classi-
fication.

A complete group classification of equations (4.1), where W = W(p,p) is
performed in (Hematulin and Meleshko and Gavrilyuk 2007), (one-dimensional
case) and (Siriwat and Meleshko, 2008).(three-dimensional case). Invariant so-
lutions of some particular cases which are separated out by the group classifica-
tion are considered in (Hematulin and Meleshko and Gavrilyuk 2007),(Siriwat and
Meleshko, 2008) . Group classification of the class of models describing the be-
havior of a dispersive continuum with £ = &(p,|Vp|) was studied in (Voraka and
Meleshko, 2009). It is also worth to notice that the classical gas dynamics model
corresponds to W = W(p, S) (or ¢ = e(p, S)). A complete group classification
of the gas dynamics equations was presented in (Ovsiannikov, 1978). Later, an
exhausted program of studying the models appeared in the group classification of
the gas dynamics equations was announced in (Ovsiannikov, 1994). Some results
of this program were summarized in (Ovsiannikov, 1999).

The present paper is focused on the group classification of the one-
dimensional equations of fluids (4.1), where the function W = W (p, p, S) satisfies
the conditions Ws,;; = 0 and Ws # 0.

The paper is organized as follows. The next section studies the equivalence
Lie group of transformations. The equivalence transformations are applied for
simplifying the function W {p, g, S) in the process of the classification. In Section
3 the defining equations of the admitted Lie group are presented. Analysis of
these equations separates equations (4.1) into equivalent classes. Notice that these
classes are defined by the function W(p, p, S). For convenience of the reader, this

analysis is split into two parts. A complete study of one particular case is given in



Section 4. Analysis of the other cases is similar but cumbersome. A complete study
of the other cases is provided in Appendix. The result of the group classification
of equations (4.1) where Ws;; = 0 and Wy # 0 is summarized in Table[1]. The

admitted Lie algebras are also presented in this table.



CHAPTER II

FLUIDS WITH INTERNAL INERTIA

Equations of fluids with internal inertia are obtained on the base of the

Euler-Lagrange principle with the Lagrangian
L = L(p, ps, Vp, u),

where ¢ is time, V is the gradient operator with respect to the space variables
T1,Ts, %3, p is the fluid density, u = (uy,u2,us) is the velocity field. The density
p and the velocity u satisfy the mass conservation equation and the equation of

conservation of linear momentum
p+pdiv(u) =0, pi+Vp=0, (2.1)

where () = 8/8t + uV is the material derivative.

Among fluids with internal inertia two classes of models have been inten-
sively studied. One class of models is constructed, assuming that the internal
energy € depends on the density p and the gradient of the density |Vp|. Review
of these models can be found in (Gavrilyuk and Shugrin, 1996), (Anderson, Mc-
FFadden and Wheeler, 1998) and references therein. The thesis is devoted to the
study of another class of models. These models are obtained by assuming that the

Lagrangian is of the form (Gavrilyuk and Teshukov, 2001):
1 .
L = splul* = W(p,p), (22)

where W (p, p) is a given potential. In this case the pressure p is given by the

formula

(2.3)

ow g oW oW
p=p( )—W-

*5{)- - 52(—) - dw(a—pu)



Notice that if W is a linear function with respect to p, then these equations
are reduced to the classical Euler equations of a barotropic gas.

In the next sections we give examples of two the most well-known models.

2.1 Iordanski-Kogarko-Wijngaarden model

The Tordanski-Kogarko-Wijngaarden model describes a bubbly fluid with
incompressible liquid phase and small volume concentration of gas bubbles. This

type of model was proposed by Iordanski (1960), Kogarko (1961) and Wijngaarden

(1968).
This mathematical model can be written in the form
bs) :
—é}l + div(pyu) = 0,
d :
-% + div(pou) = 0,
I v div(Nu) =, (24)
ot 4
u+ -Vp=0,
P
. 3 1
RR+ ——=— %)
2R pio (P2 =7)
where
pL = o, P2 = G2p20, (2-5)

p1o = const is the physical density of the liquid, py is the physical density of the
gas, a;, (¢ = 1,2) are the volume fractions: a; + @, = 1, N is the bubble number

density, R is the bubble radius,
p=p1+ps. (2.6)
The volume fraction of the gas phase a, is defined by the formula

ay = %wf?N. (2.7)



The gas pressure p, is a given function of pog:

P2 = Phoeho(P20),

where €50(pa0) is the internal energy of the gas phase. It is assumed that the mass
concentrations ¢; = p;/p, (¢ = 1,2), and the number of bubbles per unit mass

n = N/p are constant. From (2.5)-(2.7) one obtains

Bedford and Drumbheller (1978) proved that equations (2.1), (2.3) can be obtained

by using the potential function
W = p(Caez(pa) — 2mnp1o B2 RY).

Replacing R and psp in the potential function, one obtains that system of par-
tial differential equations (2.4) is equivalent to (2.1) and (2.3) with the potential

function
1

a—p

)1/3

W(p, ) = ¥(p) — kp?p3(

where

P g P10 ATP10
, k= <
¢1 8t 3¢

2.2  Green-Naghdi model

Consider the dispersive shallow water equations of Green and Naghdi (1975)

dh

e + div(hu) :_0 (2.8)
ke vn+ivuﬂh)~o (2.9)
uw+g @h) “h) =0, .

where h is the water depth, u is the horizontal velocity, g is the gravity, ¢ is the

ratio of the vertical length scale to the horizontal length scale. Replacing h by p,



equations (2.8) take the form

dp

+ pdiv(u) =0
“ ) (2.10)
€ i
i+ gVp+ —V(p*5) =0.
3p
The last equation of (2.10) can be rewritten as
pu+Vp=0 (2.11)
where
2
g 2,8 2.
== —pp. 2.12
p= S an (2.12)
Introducing the potential function
g2 .
W= gpz = o " (2.13)

and substituting it into (2.3), one arrives at the Green-Naghdi model which is
presented in the form (2.1) and (2.3) with the potential function (2.12).
The group analysis method was applied to one-dimensional equations (2.8) and

(2.10) in Bagderina and Chupakhin (2005).

e



CHAPTER II1

GROUP ANALYSIS METHOD

In this chapter, the group analysis method is discussed. An introduction
to this method can be found in various textbooks (cf. Ovsiannikov 1978), (Olver,

1986), (Ibragimov, 1999), (Meleshko, 2005).

3.1 Lie Groups

Consider a set of invertible point transformations
#=¢'(za), a€h, z€V, (3.1)

where i = 1,2,..., N, a is a parameter, and A is a symmetric interval in R'. The .
set V is an open set in RY.

If z = (z,u), then we use the notation v = (f, g). Here z = (1, z2,...,%a) €
R" is the vector of the independent variables, and u = (u!,u?,...,u™) € R™ is the
vector of the dependent variables. The transformation of the independent variables

z, and the dependent variables u has the form

T = fYz,w;a), @ = ¢(z,u;a), {3:2)
wherei=1,2, ... n,j=12 ...,m, (r,u) € VC R*x R™, and the set V is open
in A* % R™,
3.1.1 One-Parameter Lie-Group of Transformations

Definition 1. A set of transformations (3.1) is called a local one-parameter Lie

group if it has the following properties
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1. p(z;0)==zforall ze V;
2. w(p(z;a),b) = p(z;a+b) forall a,b,a+be A,zeV;
3. If for a € A one has p(z;a) = z for all z € V, then a = 0;

4. p € C=(V,A).

The Lie group of transformations (3.2) is called a one-parameter Lie group
of point transformations. For a Lie group of point transformations, the functions
f* and ¢ can be written by Taylor series expansion with respect to the group

parameter a in a neighborhood of a =0
i

f
da

I = z;ta + O(a®), (3.3)

a=0

+ O(a?).

a= 0
The transformations #; ~ z; + a&%(z,u) and W ~ o + al*(z,u) are called
infinitesimal transformations of the Lie group of transformations (3.2), where

afi(z,u;a)

g (zu) = L2 9¢’(z,%; a)

Y (o) =

a= 0 a= 0

The components £ = (£5,£%2, .., 6) , ¢ = ((*,¢*,...,¢*") are called the in-
finitesimal representation of (3.2). This can be written in terms of the first-order
differential operator
X = €%, u)3 + * (5:) Do (3.4)

This operator X is called an infinitesimal generator.

There is a theorem, which relates a one-parameter Lie group G with its
infinitesimal generator.
Theorem 1 (Lie). Let functions fi(z,u;a), 1 = 1,..,nand ¢’(z,u;a), j=1,...,m

satisfy the group properties and have the expansion

% = fi(z,u0) = 75 + £ (z, wa,

W = ¢ (z,u;0) = v + ¥ (z,u)a
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where
z; _ Of(z,u;a) i _ ¢ (z,u;0)
5 (x,u)— da a=01€ (:c,u)— Ja .

Then it solves the Cauchy problem

da-:‘. Tif= = dﬁj_ PrL iy T

da = Z, 'U-), dﬂa == C (I: u’) (35)
with the initial data

Ei[a: 0 = :I:‘-’ ﬁj[a: 0 I~ u-? (36)

Conversely, given £%(z,u) and ¢ % (g, u), the solution of the Cauchy problem (3.5),
(3.6) forms a Lie group.
Equations (3.5) are called the Lie equations.

To apply a Lie group of transformations (3.2) for studying differential equa-
tions one needs to know how this group acts on the functions 4/(z) and their
derivatives. For the sake of simplicity, let us explain the basic idea for the case

n =1and m = 1. Assume that uy(z) is a given known function, and the trans-

formation is
Z = f(z,u;0) =z +al(z,u) (3.7)
= g(z,u0) = utal’(z,u)
Substituting ug(z) into the first equation (3.7), one obtains
=103 ue(T 0/

Since f(z,uo(z);0) = z, the Jacobian at a =0 is

_ (9  9fdu
" \dr  Hu Iz

?j
dz

a= 0 a= 0

Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

one can express = as a function of 7 and a,

z= 8%, 0] (3.8)
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Note that after substituting (3.8) into the first equation (3.7), one has the identity
£ = f(8(z, 0), w(0(z, a)); ). (3.9)

Substituting (3.8) into the second equation (3.7), one obtains the transformed

function

ual2) = 9(0(z, a), 10(0(z, a)); ). (3.10)
Differentiating equation (3.10) with respect to Z, one gets

Ouq(z) 0908  Ogdug 08 _ (@ dg , )) a0

Budz oz \oz  au ) 5z

~ 9%  0z0T  Oudr 0t
where the derivative % can be found by differentiating equation (3.9) with respect

to T,

| _ 190 97 dud0 _ (o] Bf,() 50
~ 9:0%  Ouodz 0% L

B Ay ) | 37

Since
L 05,0, 0000000 = 1, Z (050,00, 050 =0, (311)

one has gﬁ + géua(a:) # 0 in some neighborhood of a = 0. Thus,

a0 1
95 (8L +5ui(a)) ’

a.Ild
dg(z,up;a dg(=z,uo5a
ﬂ'( 0 ) g 0 }'U.’ (I)

Uz =

= h(z,up(z), uy(z); a).

3f (x,ug; df(z,ue;
f(z:oa)_!_ f(gzoa)ua(x)

Transformation (3.2) together with
iy = Rz, u, uz;a) (3.12)

is called the prolongation of (3.2).

As before, the function h can be written by Taylor series expansion with

respect to the parameter a in a neighborhood of the point a =0 :

iz = h{z, u, uz; @) = uy + a**(z,u, us), (3.13)
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where
Ah(z,u, uz;a)
da

g, Ty == Ml
a=0

Ol o n,) =

Equation (3.12) can be rewritten as

e o) (L), HGue)) _ (lend),, MCue))

Differentiating this equation with respect to the group parameter a and substitut-

_( &% 0%
N (8&:3(1 * ”“auaa)

ing a = 0, one finds

dh(8f  Of *f >*f
(% (3_3: i “mﬁ) % h((?zc?a ¥ “”auaa))

a=0 a=0
or
5 ~an| (of  of
C (:E’ u?uz) a da a=0 (8.1: +um8u) a=0
&g &g #f &
- Ni y
(B:t:@a +"‘”'auaa) L Plamo (83:8@ X * auaa,) -
- (8$ +“”au) "“”(ax o
= Dx(C“') —uy D (€7)
where
_2 .., ANNR N - 0f u_ 09 wr  Oh
D= " em \ VRN " \*Mo| § Tadl L LY ] el

The first prolongation of the generator (3.4) is given by
XW = X 4 ¢%(z, 4, uz)0,,.

In the same way, one obtains the infinitesimal transformation of the second deriva-
tive

Ugz ™ Usr + a("**(T, U, U, Use),
where (“** = D, ((**) — uz D, (€¥), and the second prolongation of the generator
(34) is

X(Q} = X(l) + Cuzz(‘r: u, uJ?JuII)auII'
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For constructing prolongations of an infinitesimal generator in case n,m > 2

one proceeds similarly.

Let z = {z;} be the set of independent variables and u = {u7} the set of

dependent variables. The derivatives of the dependent variables are given by the

sets ugy = {uf}, ug) = {ufs} ,..,where j=1,...,mandis=1,...,n. The

derivatives of the differentiable functions v/ can be written in terms of the total

differentiation operator D; :

u{ = Di(uj)a
ufs — Ds(u‘z’):
where
7] ; 0 ; @ e AN
D; = 7. + 15— +ui38u§ S oM = 1,% - . A AL ,m). (3.14)

The formula of the first prolongation of the generator X = £%(x, u)d;, +

¢ (z,u)8, is
X(I) =X+ C“g(a:,u, u(l))aug,

where

j
i

=D, (C“j) NGB ; G s =, JIA-

The second prolongation of the generator X is
x@ — x4 Cufl.iz . ic uy, u2))d,
s

where

. i j - :
(“-.1,;2 = Di:‘ (Cu‘l) - u{:.sDiz (51’,) y 12,8 = 1,...,11 147 LI

In the general case, the k-th prolongation of the generator X is

X(k) — X(kfl) + Cuglwlik (I, U, U(1), ey u(k))aﬂj
i

(3.15)
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W . 7 sy . .
(et = D (C Moellect Jomay o ool (E%) 2 By sty == Lyt § = 1y 1

Lie groups of transformations are related with differential equations by the

following.

Definition 2. Given a partial differential equation, a Lie group of transformations,
which transforms a solution ug(z) into a solution u,(z) of the same equation is

called an admitted Lie group of transformations.

Let F = (F!,...,F¥), k=1,..., N be differential functions of order p. The
equations
Fk (I,u, U(l), U(g), Ty U(p)) — 0, k - 1, < N (316)
compose a manifold [F = 0] in the space of the variables x, u, uq), ue), ..., %)
After applying an admitted Lie group of transformations to a solution u(z),
one has
F* (2,8, Uy, By, ) =0, (b= 1,.., N). (3.17)
Differentiating these equations with respect to the group parameter a, and substi-

tuting @ = 0, one finds

OF* oz, OF* 8w  OF* I, aFt 0w,
——t et o f =0
dz; Oa oul da Bu,gl da au-z.’l irod da —
or
aF* ; OF*% i OF% i OF® j AF*
T; u : u; ; Uiy g : R P S —— |
Cgn v Gu T g T g T T e T =0,
3! 1412 11,12,--1p
where
_ 7 , _j _ —_j
é-zi _ Bg«‘i ’ Cuf _ % ) u?l _ Bif! - c-._,_i!l — auil,u ip
oo X P 9 |, da » da »
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The last equation can be expressed as an action of the prolonged infinitesimal

generator
XOFk | zmq) =0, (k=1,..,N), (3.18)
where
d ; O i 0 i i a
X(P): :l:,-__+ uj___'_l_ Uiy e Ui g ! A Y vigeip
£ dz; ¢ ol ¢ o, ¢ s, ¢ 3“2?1;2,...,1',,

Hence, in order to find the infinitesimal generator of the Lie group admitted by

differential equations (3.16) one can use the following theorem.

Theorem 2. The differential equations (3.16) admits the group G with the gen-

erator X, if and only if, the following equations hold:
XOF rzq =0, (k=1,..,N). (3.19)

Equations (3.19) are called the determining equations.

3.1.2 Multi-Parameter Lie-Group of Transformations

Let O be a ball in the space R™ with a center at the origin. Assume that P is a
mapping, 1 : O x O — R". The pair (O, ¢) is called a local multi-parameter Lie
group with the multiplication law 1 if it has the following properties:

L. 9(a,0) =(0,a) = a for all a € O;

2. P(¥(a,b), c) = ¥(a, (b, c)) for all a,b,c € O for which v(a, b), (b, ¢) € O;

3. ¥ € C*(0, 0).

Let V be an open set in RY. Consider transformations

b = e, (3.20)

]

where1=1,2,..., N, z€ V, and a € O is a vector-parameter.
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Definition 3. The set of transformations (3.20) is called a local r-parameter Lie
group GT if it has the following properties:

L ¢(z,0)=zforall ze V.

2. (p(z,a),b) = ¢(z,%(a,b)) for all a,b,v(a,b) € 0, z€ V.

3. If for a € O one has p(z,a) = zforall z€ V, thena = 0.

Note that if one fixes all parameters except one, for example ai, then the
multi-parameter Lie group of transformations (3.20) composes a one-parameter
Lie group. Conversely, in group analysis it is proven that any r-parameter group
is the union of one-parameter subgroups belonging to it.

Let G" be a Lie group admitted by the system of partial differential equa-
tions

Fzup) =0, k=1,..,s.
Assume that {X;, X, ..., X,.} is a basis of the Lie algebra L, which corresponds

to the Lie group G".
Definition 4. A function ®(z,u) is called invariant of a Lie group G” if
o(z,7) = P(z, u).

Theorem 3. A function ®(z, u) is an invariant of the group G™ with the generators

X;, (=1,...,r) if and only if,
Yoz af =0\ =N [ A7)k (3.21)

In order to find an invariant, one needs to solve the overdetermined system

of linear equations (3.21). A set of functionally independent solutions of (3.21)
d={ e 9, T8, s, 1) )
is called an universal invariant. Any invariant ¢ can be expressed through this set

¢ =¢(J(z,u), S (z,1),.., ] ™" (z,u) ).



18

Here n, m is the numbers of independent and dependent variables, respectively and

r, is the total rank of the matrix composed by the coefficients of the generators
X,', (Z = 1, 2, — T).

Definition 5. A set M is said to be invariant with respect to the group G7, if the

transformation (3.20) carries every point z of M to a point of M.

Definition 6. Let V be an open subset of R¥, and ¥ : V — R, t < N a
mapping belonging to the class C(V). The system of equations ¥(z) = 0 is called

regular, if for any point z € V' :

ot (2Pt

8 ( 21y ZN

where ¥ = (1, ..., ¢%).
If a system ¥(z) = 0 is regular, then for each 25 € V' with ¥(z) = 0 there exists

a neighborhood U of z in V such that
M={zeU : ¥ =0}
is a manifold. Such a manifold is called a regularly assigned manifold.

Theorem 4. A regularly assigned manifold M is an invariant manifold with re-

spect to a Lie group G™ with the generator X;, (i =1,...,7), if

Xtk (G =0t DN, =T,k

3.2 Lie algebra

Before giving the definition of a Lie algebra, one needs to introduce the
commutator. Let X; = £}9;, + (,’f@uj, Xy = 68, + C‘zi@uj be two generators. Let

us define a new generator X, denoted by [X), X;], by the following formula

X = [X1, Xo] = (Xu6) — Xafd) 0z, + (X — Xa(]) Bay.
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The generator X is called the commutator of the generators X, Xs.

Definition 7. A vector space L over the field of real numbers with the operation
of commutation [ -, -] is called a Lie algebra if [X7, X3] € L for any X;, X, € L,

and if the operation [ -, - | satisfies the axioms:
a.l (bilinearity) : for any X;, Xz, X3 € Landa, b € R
| [aXy+bXs, Xs] =\, Xs] + b[Xa, X3
[X1,aX2 + bX3] = al[X;, Xo] 4+ b[Xy, X5
a.2 (antisymmetry) : for any X, X; € L

(X1, Xo] = — [Xa, X

a.3 (the Jacobi identity) : for any X;, X2, X3 € L

[[XhXQ] )X3] g {[XQ: -XS] ;Xl] -+ [{X:},X1] i Xg] ={).

Let L™ be an r-dimensional Lie algebra with basis X1, X5, ..., X;: i.e., any

vector X € L™ can be decomposed as

X = Z.Ikak
k=1
where z; are the coordinates of the vector X in the basis {Xi,..., X;}. Then

r

NS e T

k=1

with real constants cfj The numbers ci-“j are called the structural constants of the

Lie algebra L™ for the basis {X,..., X, }.

Definition 8. A vector space H C L is called a subalgebra of the Lie algebra L,

if [Y1,Y2] € H for any Y),Y, € H.

Definition 9. A subalgebra I C L is called an ideal of the Lie algebra L if for

any X € L, Y € I it is also true that [X,Y] € [.
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3.3 Classification of subalgebras

One of the main aims of group analysis is to construct exact solutions of
differential equations. The set of all solutions can be divided into equivalence

classes of solutions:

Definition 10. Two solutions u; and u, of a differential equation are said to be
equivalent with respect to a Lie group G, if one of the solutions can be transformed

into the other by a transformation belonging to the group G.

The problem of classification of exact solutions is equivalent to the clas-
sification of subgroups (or subalgebras) of the group G (or the subalgebra L).
Because there is a one-to-one correspondence between Lie groups and Lie algebras
let us explain here the classification of subalgebras. For this purpose, one needs

the following definitions.

Definition 11. Let . and L be Lie algebras. A linear one-to-one map f of L onto

L is called an isomorphism if it satisfies the equation
FX, Xolp) = [F(X0), f(X2)lp, YV Xu, X2 €L

where the indices L and L denote the commutators in the corresponding algebras.
An isomorphism of L onto itself is called an automorphism of the Lie algebra L.

This mapping will be denoted by the symbol A: L — L.

In the finite-dimensional case, isomorphic Lie algebras have the same di-
mensions. The criterion for two Lie algebras to be isomorphic can be stated in
terms of their structural constants. Two Lie algebras L and L are isomorphic, if
and only if there exist bases for each of them in which their structural constants

are equal.
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Let L be a Lie algebra with basis { Xy, X2,..., X,}. Then one has
Gl = Y dfiXas od=120.00,7),
a=1

where cf; are the structural constants. One constructs a one-parameter family of

automorphism, A;, (:=1,...,n) on L,

Ai : inX,- 7 Z:E,;X,-
i=1 i=1
where Z; = Z;(a), as follows. Consider the system

dZ; = ;_ ,
aj:%:lc;ia:ﬁ, (G=12,...,n). (3.22)

Initial values for this system are T; = z; at a = 0. The set of solutions of these
equations determines the set of automorphisms {4;}.

The set of all subalgebras is divided into equivalence classes with respect
to these automorphisms. A list of representatives, where each element of this list
is one representative from every class, is called an optimal system of subalgebras.

Because of the difficulties in constructing the optimal system of subalgebras
for Lie algebras of large dimension, there is a two-step .algorithm (Ovsiannikov,
1994), which reduces this problem to the problem for constructing an optimal
system of algebras of lower dimensions. In brief, let us consider an algebra L™ with
basis { X1, Xs,..., X }. According to the algorithm, the algebra L™ is decomposed
as [} @® N, where [; is an ideal of L™ and N| is a subalgebra of the algebra L”. In
the same way, the subalgebra N; can also be decomposed as N, = [, & N,. Repeat
is the same process (a — 1) times one ends up with an algebra N,, for which an
optimal system of subalgebras can be easily constructed. By gluing the ideals [,
and subalgebras N; starting from | = a to [ = 1, together one constructs the
optimal system of subalgebras for the algebra L™. Note that for every subalgebra

N, one needs to check the subalgebra conditions and use the automorphisms to



22

simplify the coefficients of these systems. Therefore, the problem for constructing
an optimal system of subalgebras of the algebra L™ by this method is reduced to
the problem of classification of algebras of lower dimensions.

After constructing the optimal system, one can start seeking invariant and

partially invariant solutions of subalgebras from the optimal system.

3.4 Equivalence group of transformations

A system of PDES can be classified by the symbol E(m,n,s,[), where m
is the number of the dependent variables, n is the number of the independent
variable, s is the order of the highest derivative and [ is the number of differential
equations. Normally the differential equations include arbitrary elements (6). For
searching Lie groups which are admitted by the original system, one needs to de-
termine a group of transformations that changes arbitrary elements-but does not
change the differential structure. An infinitesimal approach (Meleshko, 1996) was
applied for finding this group.

A nondegenerate change of dependent, independent variables and arbitrary ele-

ments which transfers any system of the differential equations of the given class
E(I, u’! p:e) = U (323)

to the system of the equations of the same class but with different arbitrary ele-
ments is called an equivalence transformation. Here p defines the partial derivatives
(), w2y, -, uge))-

A Lie group of equivalence transformations with parameter a can be written

as follows

% = ¢'(z, u, 0;a), oy = Pz, u,0;a), O = Hk(:c, u,6;a), (3.24)
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where 0 = (01, Ok2, ..., Oxv) is the set of arbitrary elements. The generator of this

group has the form
X® =68, + P, + (s,
where
i g _ 94 g i _ oy o5 _ o~ _ o
'E = g (I!u‘: 0) = da '0‘-=01 C e C (1:71"'19) = da Ia=01 C = C (I,U,B) = da |a=0)

Transformations of arbitrary elements are obtained in the following way.
Let 6p(8,u) be given. By the inverse function theorem with equation (3.23), we

can find z = f(Z,%;a) and u = ¢(Z,%;a). The transformed vector of arbitrary

elements is
60(z, %) = 11(f (3,5 0), 9(7, G a), 6ol /(7. T 0), 9(3, T a).

If ug(z) is solution of system (3.22) and 6p(z, u) is a concrete value of the arbitrary

elements, then we have
T = O(z, uo(z), o(z, uo(2)); a)-
By the inverse function theorem, we can find
z = f(Z;a)
and we also obtain the transformed function
ue(Z) = U(f(Z,a), uo(f(Z, ), 60(f(Z, a), uo(f(Z, a)); a)). (3.29)

Differentiating (3.24) with respect to Z, we get the transformation of deriva-

tives p. Since u,(Z) is a solution of the same system with transformed arbitrary

elements §,(Z, @) then

FI(Z, 4o (T), Pu(Z), 0.(Z, ua(Z))) =0, 1 =1,2,..
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The s-th prolongation of the infinitesimal generator X*¢ is

XY = X+ o5+ om, + CCom, (3.26)

where
¢ = Dp ¢ —ulD.£%,

¢ = D5 ¢* - 0, D™ — 65, DE P,

G, = D™ — 6k D¢~ 0%, D2 (P,
Here

Ds= Bi + u{% +(65 + oﬁju{)a—i oz
1 = (—,)% +9§‘,£—é ¥.., D= 5% + f)ﬁj%k- S

By the same way as for the admitted Lie group, one can obtain the determining
equations for the equivalence Lie group.

Let G(6) be admitted by the equations for all arbitrary elements. The group G(6)
is called a kernel of groups. The corresponding Lie-algebra, is called a kernel of Lie

algebras.



CHAPTER IV
GROUP CLASSIFICATION OF THE

ONE-DIMENSIONAL EQUATIONS

4.1 Introduction

Symmetry is a fundamental topic in many areas of physics and mathematics
(Ovsiannikov(1978],0lver[1986], MarsdenRatiu[1994], GolubitskyStewart[2002]).
Whereas group-theoretical methods play a prominent role in modern theoretical
physics, a systematic use of them in constructing models of continuum mechanics
has not been widely applied yet (Ovsiannikov[1994]). The present paper tries to
help to fill this niche.

This manuscript is focused on group classification of a class of dispersive

models (GavrilyukTeshukov2001)

)+ pdiv(u) =0, pu+Vp=0, S=0,
p+ pdiv(u) p p (1)

a a v . 8
p=pSy ~W =p(B% — 8(5%) — div(GFu)) = W,

where t is time, V is the gradient operator with respect to space variables, 2 1s the
fluid density, u is the velocity field, W(p, p, S) is a given potential, ’dot” denotes
the material time derivative: f = % = fi +uV [ and %%V denotes the variational
derivative of W with respect to p at a fixed value of u. These models include
the non-linear one-velocity model of a bubbly fluid (with incompressible liquid
phase) at small volume concentration of gas bubbles (lordanski (1960) , Kogarko
(1961) ,Wijngaarden (1968) ,(Wijngaarden[1968]), and the dispersive shallow wa-

ter model (Green & Naghdi (1975) , Salmon (1998). Equations (4.1) were obtained
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in (GavrilyukTeshukovZOOl) using the Lagrangian of the form
I _
L =3l = Wip,p,5)-

This is an example of a medium behavior dependent not only on thermodynamical
variables but also on their derivatives wifh respect to space and time. In this
particular case the potential function depends on the total derivative of the density
* which reflects the dependence of the medium on its inertia. Another example of
models where the medium behavior depends on the derivatives is constructed in

(GavrilyukShugrin[1996]) by assuming that the Lagrangian is of the form:

1
L= 3lul* =&, 1V, S).

One of the methods for studying properties of differential equations is group
analysis (Ovsiannikov[1978],0lver[1986],Ibragimov[1999]). This method is a basic
method for constructing exact solutions of partial differential equations. A wide
range of applications of group analysis to partial differential equations are collected
in (HandbookLie(v1),bk:HandbookLie(v2),bk:HandbookLie(v3)). Group analysis,
besides facilitating the construction of exax;t solutions, provides a regular procedure
for mathematical modeling by classifying differential equations with respect to
arbitrary elements. This feature of group analysis is the fundamental basis for
mathematical modeling in the present paper.

An application of group analysis employs several steps. The first step is a
group classification with respect to arbitrary elements. An algorithm of the group
classification is applied in case where a system of differential equations has arbi-
trary elements in form of undefined parameters and functions. This algorithm is
necessary since a specialization of the arbitrary elements can lead to an extension
of admitted Lie groups. Group classification selects the functions W (p, p, S) such

that the fluid dynamics equations (4.1) possess additional symmetry properties
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extending the kernel of admitted Lie groups. Algorithms of finding equivalence
and admitted Lie groups are particular parts of the algorithm of the group classi-
fication. |

A complete group classification of equations (4.1), where W = W(p, p)
is performed in (HematulinMeleshkoGavrilyuk[2007])  (one-dimensional
case) and (SiriwatMeleshko[2008]) (three-dimensional case). Invari-
ant solutions of some particular cases which are separated out by
the group classification are considered in (HematulinMeleshkoGavri-
lyuk[2007],SiriwatMeleshko[2008], HematulinSiriwat[2009]). Group classification
of the class of models describing the behavior of a dispersive continuum with
e = €(p,|Vp|) was studied in (VorakaMeleshko[2009]). It is also worth to
notice that the classical gas dynamics model corresponds to W = W(p,S) (or
e = €(p,S)). A complete group classification of the gas dynamics equations was
presented in (Ovsiannikov[1978]). Later, an exhausted program of studying the
models appeared in the group classification of the gas dynamics equations was
announced in (Ovsiannikov[1994]). Some results of this program were summarized
in (Ovsiannikov[1999]).

. The presenl, paper is focused on the group classification of the one-
dimensional equations of fluids (4.1), where the function W = W (p, p, S) satisfies
the conditions W, = 0 and Ws #0.

The paper is organized as follows. The next section studies the equivalence
Lie group of transformations. The equivalence transformations are applied for
simplifying the function W (p, g, S) in the process of the classification. In Section
3 the defining equations of the admitted Lie group are presented. Analysis of
these equations separates equations (4.1) into equivalent classes. Notice that these

classes are defined by the function W(p, p, S). For convenience of the reader . The
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result of the group classification of equations (4.1) where Ws;; = 0 and Ws # 0
is summarized in Table 5.1. The admitted Lie algebras are also presented in this

table.

4.2 Equivalence Lie group

For finding an equivalence Lie group the algorithm described in
(Meleshko[1996],Meleshko[2005]) is applied. This algorithm differs from the clas-
sical one (Ovsiannikov[1978]) by assuming dependence of all coefficients from all
variables including the arbitrary elements. Since the function W depends on the

Vderivatives of the dependent variables and in order to simplify the process of find-

ing an equivalence Lie group, new dependent variables are introduced:
uz=p,uy=3S.

Hete uy = p, up = u, u3 = pand uy =S, ; = z, o = ¢t. An infinitesimal

operator X ¢ of the equivalence Lie group is sought in the form (Meleshko[2005])
X¢ =8, 490, + Wow,

where all the coefficients £*, (%, (i = 1,2; j = 1,2,3,4) and ¢V are functions of
the variables z, ¢, p, u, p, S, W. Here after a sum over repeated indices is implied.
The coefficients of the prolonged operator are obtained by using the prolongation

formulae:
(Ut = DECs — up ) DEET — ugaDEEY, (i=1,2),

Df = aa: + uﬁ,lauﬁ + (Pzwa,l + }51:[4’/&,2 e SrWas)awn,

D3 = 8; + upp0uy + (pWan + piWaa + SiWo3)0w,,
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where a = (ay, g, a3) and B = (1, B2) are multi-indexes (a; > 0), (8; > 0)

(1, a0,03),1 = (a1 + 1,02,03), (0u,02,03),2 = (a3, a2 +1,a3),

(a1, a2,a3),3 = (a1, 02,03 + 1)

(Br,B2),1 = (61 +1,5), (B1,02),2=(B1,62+1)

GPr+Pay gertextasly
u(ﬁg,ﬁz) — ——axﬂl 8tﬁ2 ¥ W(au ,a2,83) — apalafjﬂz aSaa =

The conditions that W does not depend on ¢, = and u give

(=0, (=0, (=0, (=0, (=L =0 Cg:ﬂ’ gt‘fjf:(), 1= 1,2).

u

Using these relations, the prolongation formulae for the coefficients { Wa become:
(Wai = DiWe — Wy DG = Wan D¢ — WasDi¢™, (i=1,2),

D¢ = 8, + WarBw., D=0+ Wa2dw,, D§= s+ Wasbw,.
For constructing the determining equations and for their solution, the symbolic
computer Reduce (Hearn) program was applied. Calculations give the following

basis of generators of the equivalence Lie group

X§ = 8;, X§="0:\X3 S0+ X5 = (O/ #4208,
X¢ = t9, + 2p8, — udy, X§ = 0w, X5 = —udy + pd, — Wow + 10,
X = po(S)ow, X§ =.pg(p, 5)0w, Xip = h(5)0s,
where the functions g(p, ), p(S) and h(S) are arbitrary. Here only the essential
part of the operators X§, (z = 5,6, ..., 10) is written.
Since the equivalence transformations corresponding to the operators X¢ ,
X¢E, X5, X§,X¢ and X, are applied for simplifying the function W in the process of

the group classification, let us present these transformations. Because the function
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W depends on p, g and S only, the transformations of these variables are presented:

Xe: p=pe®, pf=p =8 W' =W,

X§: o =np, F=p S=5 W'=We?e,

XE: pl=pe®, F=p 8=8 W' =W+ gq;

Xs: p=p, f=p §=8 W' = pp(S)a + W;
Xs: d=p F=p S=5  W=pgp,Sat+W

Xf[} : p, = B p-’ = [), Sl = q(S) G) W, = W;

Here a is the group parameter.

4.3 Defining equations of the admitted Lie group

An admitted generator X is sought in the form
X =705 + €0+ ("8, + 0y + (%05,

where the coefficients £7, £, ¢#, (%, ¢ are functions of (z,t, p,u, S). Calculations

showed that

€% = (kot + k3)z + kat + ks, &' = kot® + (kg + 2k3)t + K.

Cp = p(kg - kzt), Cu = kg(—ut + .'13') = u(kl + k3) 4+ kg;,

¢5 = ¢5(8),
ka(3Wipsp + Wissop +3Ws5) = 0, (4.2)
—3W;556C5 + 3W,50% (k1 + 2ks — k) ~ 3W;5,ppks -
+3W;56(2ks — kg) — pka(3Wss + Wsop) = 0,
ka(Woposhp — Wipgs + 3Wopppsf® — Wopop + W) =0, (4.4)
CE0(Wipps — Woppsp) — Woppspp?hs — Wopspp(2ky + 2ks + kg)
A W,p55620(k1 + 2k — ks) + Woppp?ks + Wopp(2ky + 2k + ks) (4.5)

ko p(Wppisp® + 5Wppop + 3W5;) = 0,
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ka(Wppspp®—3Wosspp+3W 550" p—3Wss p°+3Wss p— W, 592 43W,5p—3Ws) = 0,
(4.6)
~WoppspP°ks — 2Wsppky — 2Wassppks + Wossppks + Wosssp?p(2ks + ky — kg)
+Wﬁ@5ﬁ2(kg — ki — 2k3) + W;sp(2ky + 2ks — ks) + pr5p2k8 + Wosp(2ky + 2k; — kg)
+Ws(kg — 2ky — 2k3) + ppka(Woppsp + 3Wsss) + (5 (—Wosspp + Wisp + Wosp — W)

+C5(—Wopsspp + Wyssp+ Wossp — Wss) =0,
(4.7)

where k;, (i = 1,2,...,8) are constant. The determining equations (4.2)—(4.7)
define the kernel of admitted Lie algebras and its extensions. The kernel of admit-
ted Lie algebras is determined for all functions W {(p, p, S) and it consists of the

generators

}Q:am)}/&=3h%:tam+au

Extensions of the kernel depend on the value of the function W(p, p,S). They can

only be operators of the form
ky Xy + ko X + ks Xs + ks Xg + (585,

where

Xy =t0, —ud, — pd;,
Xy = t{x0; + 28, + (z — ut)dy — tpd, — (p + 3tp)5;
X3 = 20, — ud, + 2t0, — 2p0; — pd, — p9;,
Xg = pd, + po,.
Since the function W(p, p, S) depends on p, the term with 8, is also presented in
the generators.
Relations between the constants ky, ks, k3, kg and ¢5(S) depend on the

function W (p, p, S).
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4.4 Case ky #£0
If ks # 0, then equation (4.2) gives
3Wsa0 + Woppp +3W;; = 0.
The general solution of this equation is
W(p, 5,5) = p°9(2,5) + wolp, S), (4.8)
where z = pp~3. Substituting (4.8) into (4.4), one obtains
P0ppp = Popp = 0.
The general solution of this equation is
0o = p*u(S) + pI(S) + J(S), (4.9)

where without loss of the generality by virtue of the equival-ence transformation
corresponding to the operator X§, it can be assumed that I(S) = 0. Equation
(4.6) gives that J' = 0. By virtue of the equivalence transformation corresponding
to X7, it can also be assumed that J = 0. Subétituting the obtained W into (4.3)
and splitting it with respect to p, one obtains g,,, = 0 or g = (5)2?, where
w2 # 0. Notice that the linear part of the function ¢, is also omitted because of
the equivalence transformations corresponding to the generator X¢. The remaining

part of equation (4.3) becomes
¥C% — 23 (ks + ks) = 0. (4.10)
If 5 =0 or v, = q #0, then k3 = —kg and equation (4.5) becomes
WCS + 2k = 0. (4.11)

For y = 0 the function W does not depend on S. Since this case has been

studied in (HematulinMeleshkoGavrilyuk[2007]), it is excluded from further study
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in the present paper. Thus, one has to assume that g’ # 0. From (4.11) one gets

¢S = —2kyu/p'. Changing the entropy S = u(S), one has
- a -
and the extension of the kernel is given by the generators
- 25'33-, Xz, X3 - Xg.

In the final Table 1 this is model M;, where the tilde sign is omitted.

If ¢4 # 0, then from (4.3) and (4.10), one obtains

H = 2—(k3 + kg),

p'pa(ks + ks) + phu(ky + ks + kg) = 0. (4.12)

If pz # 0 then, the last equation defines

B St AN (L mf ) (4.13)

!
2

Differentiation (4.13) with respect to S gives

(ks 4 ks)(“‘pz) -, (4.14)
{ph

1
If (u—w,z)’ = 0 or p = g%, then the general solution of equations (4.2) -
2]
(4.7) 1s
& Pa 3 &k
W(p,p,S) = A ap S
where § = ,(S). The extension of the kernel is given by the generators

X2, Xz—Xs, Xs— QoA 11X, +258;.

In the final Table 1 this is model M.

1Y

=)' # 0, then the general solution of equations (4.2) - (4.7) is

W(p, p,5) =55+ °uw(S), (u# aSY),

‘%,J'Qb
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and the extension of the kernel is given by the generators
X21 X3 - XS-

In the final Table 1 this is model Ms.
If £ =0, then
- ‘32 ~
W(p‘l p) S) = ?S:

and the extension of the kernel is given by the generators
X1, Xs, X3—Xg, Xg+ 258

In the final Table 1 this is model M.

Remark. The last two cases do not satisfy the restriction Wj;5 # 0 an-
nounced in the title. For the case where k2 # 0 it is not necessary to separate the
study into the cases W;;s # 0 and Wj;5 = 0. Whereas for the analysis of the case

where ks = 0, one needs to make this separation.

4.5 Results of the group classification

The result of the group classification of equations (4.1) is summarized in
Table[1]. The linear part with respect to p of the function W(p,p,S) is omit-
ted. The equivalence transformation corresponding to the operator X%, is also
used. This transformation allows one to simplify the dependence on entropy of
the function W(p, 5, S).

The first column in Table[l] presents the number of the extension, forms
of the function W (p, p, S) are presented in the second column, extensions of the
kernel of admitted Lie algebras are given in the third column, restrictions for

functions and constants are in the fourth column.



CHAPTER V
GROUP CLASSIFICATION OF THE
ONE-DIMENSION NONISENTROPIC

EQUATION

Case ky =0
For further study the knowledge of (5(S) plays a key role. For example, for k; =0

equation (4.3) becomes

WssC® = Wbk + 2ks(Wispsp + Wip) — ks(Wspp + Wigop + Ws).  (5.1)

In the present paper we study the case where
prg = 0.

By virtue of the equivalence transformation corresponding to the generator

X§, the general solution of the equation Wj;5 =0 is

Wi(p, 5, 5) = dlp, p) + h(p,S),

where ¢;hs # 0. Since for ¢;; = 0 equations (4.1) are equivalent to the gas

dynamics equations, it is assumed that ¢;; # 0. Equation (5.1) reduces to
kya + ksb — kgc = 0, (5-2)

where

a = pdsssn b= 2(pbsss + $i5), = —(pdspp + PPiso + bpp)-
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In the further study the following strategy is used. Notice that equation

(4.5) is linear with respect to ¢¥ with the coefficient h,,s, i.e.,
hopsC® = A
with some function A = A(p, p, S) which is independent of ¢5. If h,,s = 0, then
due to equivalence transformations one can also assume that
h(p, S) = n(p) + 1(S),
where 4 7é 0. In this case equation (4.7) leads to
(% = (—2kip — 2ksp + kst + co) /4,

where ¢q is an arbitrary constant. The admitted generator takes the form

X = k(X — 2583) + ka(X3 — 2585) + ks(Xs + S35) + cods,  (5.3)

where S = 4(S). Remaining equations are (4.3) and (4.5). The relations between
constants &y, k3 and kg depend on the functions 1(p) and ¢(p, §). If h,,s # 0, then
the function ¢ is defined by equation (4.5). In this case one needs to satisfy the
system of equations (4.3), (4.7) and the condition that (5 = ¢3(S).

The analysis of the relations between the constants k;, k3 and kg, follows
to the algorithm developed for the gas dynamics equations (Ovsiannikov[1978]):
the vector space Span(V'), where the set V consists of the vectors (a, b, ¢) with p, p
and S are changed, is analyzed. This algorithm allows one to study all possible

subalgebras without omission.

5.0.1 dim(Span(V)) =3

If the function W {(p, p, S) is such that dim(Span(V)) = 3, then equation

(5.2) is only satisfied for

Bi=0, & =0 bp=0
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In this case equations (4.5) and (4.7) become
Chpps =0, (§(phps — hs) +¢*(physs — hss) =0.

Since for (¥ = 0 there are no extensions of the kernel of admitted Lie algebras,
one has to consider (% # 0. The general solution of the first equation, after using

the equivalence transformation corresponding to the generator Xg, is
h = u(9),
where 1’ # 0. The general solution of the second equation is (¥ = ¢/y’. Hence
Wi(p,5,5) = ¢(p,p) + S,
and the extension of the kernel is given by the generator
ds,

where S = u(S). In the final Table 1 this is model Ms.

5.0.2 dim(Span(V)) =2

There exists a constant vector (a, 8,v) # 0, which is orthogonal to the set

aa+ b+ ye=0. (5.4)
This means that the function ¢(p, p) satisfies the equation
(a+ 2B+ 7)pdsps + 1P = — (28 + 7)dsp- (5.5)

The characteristic system of this equation is

dp _ @ _ dp (5.6)
(@+28+7)p vp —(2B+7)dps
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Case v=0

Because ¢,;; # 0 and (a,B,fy) # 0, one has that a + 283 £ 0. The general
solution of equation (5.5) is

55 = B(p)", (5.7)

where @(p) # 0 is an arbitrary function and k¥ = 23/(a + 28). Since
dim(Span(V)) = 0 for (p@' /@)’ = 0, one has to assume that (p@' /@)’ # 0.

Substitution of (5.7) into (5.2) gives

The case kg # 0 leads to (p@'/@)’ = 0. Hence, kg = 0 and equation (5.8)

becomes

k(kl © 2k3) + 2k; = 0. (59)

Let k = 0. Due to equation (5.8) one gets k3 = 0. Integrating (5.7), one

finds ¢ = p(p)p*. Equation (4.5) becomes
pps(® + 2h,ky = 0. (5.10)

Assume that h,, = 0, this means that after using the equivalence transfor-
mation corresponding to the generator X§, one has that h = p(S), where i’ # 0.

Equation (4.7) after integration gives
¢¥ = —2kiu/u + co/ut,
where ¢y is a constant of the integration. Thus,
W(p,p,5) = p(p)p* + S.
and the extension of the kernel is given by the generators

35, Xy —258;,
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where S = 4(S). In the final Table 1 this is model M.

Assume that h,, # 0. For the existence of an extension of the kernel,
equation (5.10) implies that h(p, S) = 9(p)u(S) + p2(S), where un” # 0. In this

case equation (4.5) becomes
WS 42k = 0.
If 1/ =0, then 1, # 0, k; = 0 and equation (4.7) gives (5 = cp/py. Thus,
W(p, ., 5) = @(p)p* +n(p) + 5,
and the extension of the kernel is given by the generator
03,

where S = 15(S). In the final Table 1 this is model My.

If & # 0, then ¢ = —2k u/y!, and equation (4.7) gives

(a/1) = 0.
Hence, without loss of generality one can assume that pp; = 0. Therefore,
W(p, 5,5) = v(p)i* +n(p)S.
and the extension of the kernel is given by the generator
X, — 250,

where S = p(S). In the final Table 1 this is model M.

Remark. In the cases where i’ # 0 one can assume that p3(S) = f(u(S)).
This simplifies calculations.

Let k # 0. Equation (5.9) gives

1+k

kl = 721‘\’23 ¥
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The function ¢(p, p) is obtained by integrating equation (5.7). The integration
depends on the value of k. l
Lt k=1, then

¢ = w(p)pIn|p|. (5.11)

Substituting (5.11) into (4.5), one obtains
(Shpps + 2kshy, = 0. (5.12)
If h,, = 0, then h = u(S) with u’ # 0, and equation (4.7) leads to
(% = —2ksp/u' + co /i

Therefore,

W(p, p,5) = w(p)pln |p| + 3,

and the extension of the kernel is given by the generators
X3 - 2385‘1 aS')

where 5 = u(S). In the final Table 1 this is model M,.

If h,, # 0, then
hp, S) = w(S)n(p) + p2(S), (un" # 0).

Equation (4.5) becomes /¢S + 2ksp = 0.

If 4 =0, then pj # 0, ks = 0 and equation (4.7) gives (° = ¢y/us. Thus,
W(p, ,S) = e(p)pln|p| +n(p) + S,
and the extension of the kernel is defined by the generator
s,

where S = #2(5). In the final Table 1 this is model Mjq.



If u' # 0, then
(% = —2ksu(S)/u.

Similar to the case k = 0, equation (4.7) gives s = 0. Therefore

W (p, 5, 5) = ¢(p)pln|p| + n(p)S, (1" #0),

and the extension of the kernel is given by the generator
X3 — 2503,

where S = u(S). In the final Table 1 this is model Mj;.
Let £k = -2, then
¢ = p(p)In|p|.

Equation (4.5) becomes

Chpps = kap” =0
Assuming that h,,s = 0, one has
hp, S) = n(p) + u(S),
where p' # 0. Equation (4.7) leads to
(% = coftt.

Therefore

W(p,p,S) = wlp)In|p| +n(p) + S,

and (a) for ¢” = 0, one has two admitted generators
X3 i Xl, 3§

(b) for ¢" # 0, there is the only admitted generator
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(5.13)

(5.14)

(5.15)
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Here S = p(S). In the final Table 1 case (a) is model M;, and case (b) is model
M.

Assuming that h,,s # 0, one has

Notice that here k3 # 0, otherwise there is no an extension of the kernel of admitted

Lie algebras. Hence,

(‘P ) =0. (5.16)
h'ppS P

If ¢” = 0, then equation (4.7) is also satisfied. Therefore there is the only

extension

T

and

wiolh, Dot oA AGG)

where (g5 + q?)h,ps # 0. In the final Table 1 this is model My,.

If ©" # 0, then equations (5.16) and (4.7) give
h(p, §) = @(p)p(S) +n(p) + q214(S),
where ' # 0. Therefore,
W(p,5,5) = p(p)(In[gl + S) +n(p) + S, (9" #0),
and the extension of the kernel is
X3 — X, + 05,

where S = (). In the final Table 1 this is model Mys.

Let k(k + 1)(k +2) # 0 in (5.7), then

¢ = w(p)p*+? (5.17)
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Substituting (5.17) into (4.5), one obtains
CShsppk — 2ks(k + 2)h,, = 0. (5.18)

If h,, = 0, then one can consider that h = u(S), where u' # 0. Equation

(4.7) is
(k+2)
k

¢® =2ky p/u + cof i

In this case

W (p, 4, 5) = #***¢(p) + S,
and the extension of the kernel is given by the generators
kX3 —2(k+ 1) X, +2(k + 2)59;, 83,

where § = u(S). In the final Table 1 this is model M.

If h,, # 0, then for an existence of an extension of the kernel, equation
(5.18) requires that

h(p, S) = n(p)u(S) + p2(S),

where pn” # 0. Equation (5.18) becomes
¢S’k - 2ks(k + 2)p=0.
If 4/ = 0, then puf # 0, k3 = 0 and equation (4.7) gives (5 = cp/u. Thus,
W(p, p,5) = 5**p(p) +n(p) + 5, (" # 0).
and the extension of the kernel is given by the generator
Js,

where S = to(S). In the final Table 1 this is model M;;.

If ' # 0, then
(k+2)

gS = 2k3 H/l""’a
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Similar to the case k = 0, equation (4.7) gives us = 0. Therefore,
W(p, p,5) = 6**0(p) +n(p)S, (" #0),
and the extension of the kernel is given by the generator
kX3 — 2(k+ 1) X3 +2(k + 2)58;,

where S = ;(S). In the final Table 1 this is model M.

Case v # 0.
In this case the general solution of (5.6) is
¢=r9(z), (9" #0), (5.19)

where z = pp*, k = —(a+28)/v— 1, A = 2(B8 + a)/v + 1. Substituting ¢ into
(5.1), one obtains

29"k + g"ko =0, (5.20)

where kg = ky + 2ky — kg(k + 1) and ko = 2ks — kg(2k + A+ 1). If kg # O, then

dim(Span(V)) < 1, hence, ko = 0 and kg = 0, which mean that
ky = —kg(k+X), k3=ks(2k+X+1)/2
Equation (4.5) becomes
(T hspp + ke(phope — (A — 2)h,,) =0. (5.21)
Assume that h,,s =0 or
h(p, §) = nlp) +1(S5),
where p’ # 0. Equation (4.5) and (4.7) become, respectively,

ke(pn” — (A =2)1") =0, % = ksdp/p' +co/ps'.



45

If p” — (A —2)7" # 0, then kg = 0. Thus,
W(p, 5, S) = p*9(pp*) +n(p) + S,

and there is the only extension of the kernel of admitted Lie algebras corresponding
to the generator
d3,
where § = u(S). In the final Table 1 this is model M.
If p" —(A—=2)n" =0or
@’ A =0,
=19 apln(p), A=1,
ap, A(A=1) #0.
Then,
W(p, 5, 5) = p*9(60*) +n(p) + S,
and the extension of the kernel of admitted Lie algebras corresponding to the

generators is

(2k+A+1)

5 X3+ Xg+ /\§8§, 6§

—(k+ N X +

where § = u(S). In the final Table 1 these models correspond to Mgg-Mas.

Assume that hs,, # 0 in (5.21), then

CS = —kg (phppp = (A =2)hy)/ hspp.

Since ¢% = ¢5(9), one has

—phppp + (A — 2)h.0.0
hSﬁo

= H(S), (5.22)

and (5 = kg H(S).

If H = 0, then the general solution of (5.22) is

hoo(py S) = .“(S)PA_Q- (5.23)
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Hence,

h(p, S) = u(S)n(p) + 1a(S),

where 1/(S) # 0 and
In p, A=0,
n=194 pln(p), A=1,
ij A(A - 1) 7£ 0.

Equation (4.7) gives
ks (M + ' (0°0" = Mpn' = 1))) = 0.

This equation leads to: (a) if A = 0, then kg = 0, (b) if A % 0, then pbks = 0.
Hence, an extension of the kernel of admitted Lie algebras occurs for A # 0. In

this case p5 = 0, which allows one to assume that g = 0. Thus,
W(p,5,S) = p*9(6p*) + Sn(p),

and the extension is given by the generator

(2k + A+1)

2 X3+X3.

(- N XA+

In the final Table 1 these models correspond to Ma3-Mys.

If H # 0, then equation (5.22) leads to
h=p*Q + ps,

where p = u(S), 2 = f(u(S)), @ = Q(z), z = pu and ¢’ # 0. Here H(S) =

u/i # 0. Substitution of
W(p, 5, 8) = p*9(pp*) + pQ(ou(S)) + F(1s(S))

into (4.7) gives

wf' + (A +1)f =0.
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Hence,
ff — cp‘—()\-{—l).
Integration of this equation depends on A:

qlnp, A=0,

ap, A#0.

M2

Thus,

A=0 : W(p,p5)=3(pp*) + Q(pS) + 1 In S,
A#£0 : W(p,p,S) = p*(g(pp*) + Q(pS)).
The extension of the kernel is given by the generator

(2k+ A+ 1)

: X3+ Xz — 585,

—(k+ X)X, +

where S = ,u(S ). In the final Table 1 these models correspond to Mag-Ma;.

5.0.3 dim(Span(V)) =1

Let dim(Span(V)) = 1. There exists a constant vector (a, 3,7) # 0 such
that

(a$b1 C) & (O:, ﬁaT)B

with some function B(p, p, S) # 0. Since ¢;; # 0, one has  — 2a # 0, and
Pboip = Abppr PDppp = kg,

where

3a—f—7 «
A=——— k= .
. B - 2a

B — 2«

These relations give

$sp = 106", (5.24)



where c; # 0 is constant. Equation (4.3) becomes

Kk + 2ks(k + 1) — ks(k + A +1) = 0.
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(5.25)

Integration of (5.24) depends on the value of k. Notice that k?+ \? # 0, otherwise

dim(Span(V)) = 0.

Case k = —1.
Integrating (5.24), one obtains
¢ = gop*pln|p)].

Equation (5.25) gives
ki = —Aks,

and equation (4.5) becomes
hspoC = —2kzhyy — ks(phppp — hop(2X — 1)).
Assuming that hg,, = 0 or

h(p, S) = n(p) + u(S), (W' #0),
equation (5.27) is reduced to the equation

pn"'kg = (ks(2A = 1) — 2k3)7" = 0.
The general solution of equation (4.7) is

(5 = (ks(2A+ 1) - zkg)ﬁ, s C—‘j

oo

where ¢ is an arbitrary constant.

(5.26)

(5.27)

(5.28)

If n" = 0, then without loss of the generality one can assume that n = 0.

Equation (5.28) is satisfied. Thus,

W(p,p,S) = qopp*In|p| + S,
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and the extension of the kernel of admitted Lie algebras is defined by the generators
X3 — 2505, Xs—AX1+(2)\+1)59;, 85,

where S = #(S). In the final Table 1 this model corresponds to Mag.

If n” # 0, then
kgzkg( wl—ﬂ"’—)_ (5.29)

Because k3 is constant, one has

Assume that

or " = qp¥, where v is constant. Substituting " into (5.29), one gets

v+1
ks—kg(,\— 5 )

Thus

W(p,,5) = qopp*In|pl +n(p) + S, (" = aqp’, @1 #0),
and the extension of the kernel of admitted Lie algebras is defined by the generators
2Xs — 20Xy + (2 — v — 1) X3 + 2(v +2)583, 85,

where S = u(S) and q; # 0. In the final Table 1 this model corresponds to Mag.

If

then kg = 0,
W(p,5,5) = qopp*n |4l + 1(p) + &,
and the extension of the kernel of admitted Lie algebras is defined by the only

generator

3.
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In the final Table 1 this model corresponds to Msg.
Assuming that hg,, # 0, equation (5.27) gives

hpp

Phppp — hpp(2X — 1) )

s
= -2k -k 5.30
k 3hSpp ’ hSap ( )

Differentiating equation (5.30) with respect to p, one obtains
—ho{(2)\ —

ks (ll!ﬁ) + kg (Phppp po(2 1)) = (5.31)

hS.op P hSpp P
If (;?;&) = 0, then h = 7(p)p(S) + f(1(S)), and equation (5.31) becomes

o) p
AN

ks (%) ={: (5.32)

Here p'n" # 0.
" !
If (Eg,—) # 0, then kg = 0. Equation (4.7) gives

f(1) = cops. (5.33)
Changing the function n such that 7+ ¢y —+ 7, one obtains
W(p,5,5) = qopp™ In|p| + n(p)S, (1" #0),
and the extension of the kernel is given by the only generator
X3 — 258,

where S = #(S). In the final Table 1 this model corresponds to Ms;.

f’

AN
If ( £1 ) = (), then " = p”, where v is constant. Further study depends

on v.
If v = —1, then

n = plnp. (5.34)

Substitution of (5.34) into (4.7) gives

2(ks — Akg)(f'e — f) = (a1 — ks f), (5.35)
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where ¢, is a constant of the integration.

Assume that f'u — f =0, then f = ¢z, and equation (5.35) becomes
qikgp = cy.
Because u' # 0, one obtains g kg = 0 and ¢; = 0. If ¢y = 0, then
W(p,5,5) = qopp*In|p| + Splnp,
and the extension of the kernel is given by the generatofs
X3 — 2885, —AXi + Xg + 22503,

where § = #£(S). In the final Table 1 this model corresponds to Msy. If ¢y # 0,

then kg = 0. Thus,
Wip, $,5) = qpp*Inlp| + S(pInp+q), (@ #0),
and the extension is given by the only generator
X3 —259;.
In the final Table 1 this model corresponds to Mas.
If ffu— f#0, then

c—ksf
=AMg+ ——. 5.36
NS -

Differentiating the last equation with respect to u, one gets

cy — ks f '_
(f’u—f) 7

or
colf'u—f)=ca —ksf,
where ¢ is constant. Notice that if ¢ = 0, then an extension of the kernel only

occurs for kg # 0. This means that f = const which is without loss of generality



52

can be assumed f = 0, and then f'u — f = 0. Hence one has to assume that
co # 0. This implies that

flu—af =g,
where kg = cp(1 — a) and ¢; = cog. Notice that by virtue of the equivalence
transformation corresponding to the generator X one can assume that ags = 0.
We also note that for a = 1 one obtains kg = g3 = 0, which prohibits an extension
of the kernel. Hence, o # 1. The extension of the kernel of admitted Lie algebras

is given by the only generator
2(1 - Q)(Xg —AX1+ )\X3) + X3 — 2565:,

where

W(p, p,3) = qpp* In|p| + Splnp + £(8),

S = u(S) and

f(s,): qun(S)a a =0,

25, ala—1) #0.
In the final Table 1 these models correspond to Mg and Mjs.
If v = -2, then h = p(S)Inp+ f(u(S)). Integrating equation (4.7), one
has

(2k3 — (22 + )kg)(uf' = f) — pks = ey, (5.37)

where ¢; is a constant of the integration. If f'u — f = 0 or f = gy, then kg = 0,
and ¢; =0, and

W(p,p,5) = qopp* In]p| + S(in p + q1). (5.38)

The extension of the kernel in this case is given by the only generator

X3 —258;.
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In the final Table 1 this model corresponds to Mag. If f'u — f # 0, then

¢y + pkg
2ks = (2A+ V)ks + W=
and, hence,
(Cl &= ks#)' -0
wf' —f
or

co(pf' — f) =a+ ksp,
where ¢y is constant. Notice that if ¢g = 0, then kg = 0, and there is no an

extension of the kernel of admitted Lie algebras. Hence, cy # 0, and
flu—f=@tay,
where kg = cpa and ¢; = ¢pg3. The general solution of the last equation is
f=oauln(p) +ap - g.
Thus, the extension of the kernel of admitted Lie algebras is given by the generator
—2XaX; + (2aA + 1) X3 + 20 Xg + 2(a — 1)505,

where
W(p, p, S) = qopp In|p + Sinp+ q1) + aSn(3),
and S = p(S). Notice also that the previous case (5.38) is included in the present

case by setting o = 0. In the final Table 1 this model corresponds to M.

Let (v + 1)(v +2) # 0, then h = p**?u(S) + f(u(S)), and equation (4.7)
gives

(2ks — (22 —v — Dkg)(f' — ) + (v +2) fhs = 1. (5-39)
If fle — f =0 or puy = qpu, then

(V + 2)M1k8 =C.
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Because (v + 2)y’ # 0, one obtains that kg = 0 and ¢; = 0. If ¢, = 0, then
W(p, ,S) = qopp*In|p| + Sp**2,
and the extension of the kernel is given by the generators
X3 — 2585, —AX; + Xg + (2X — v — 1)80;,

where § = 1(S). In the final Table 1 this model corresponds to Mag.

If g1 #0, then k3 = 0. Thus
Wip, 5, 5) = qopp* nlp| + S+ + 1), (¢ #0),
and the extension of the kernel is given by the only generator
X3 — 250;.

In the final Table 1 this model corresponds to Mgq.
If uf' — f #0, then

a—(v+2)fks

2ky = (2A —v — D)kg + ,
= | v — 1)kg A |

and, hence,
ICh < (U+2)fk8 =7
PR ’

where ¢y is constant. Notice that if ¢ = 0, then an extension of the kernel
only occurs for f = const, whereas by virtue of the equivalence transformation
corresponding to the generator X¥ one can assume that f =0, and then f'u— f =
0. Hence, ¢y # 0, and

f'u—of =q,

where
l-«a
v+2°

€1 = CopQq2, ks =co
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Here, as in the previous case, one has to require that o # 1. Hence,
W(p,5,5) = qopp* In |p] + Sp*+* + f(S),
and the admitted generator is
2Ma — D)Xy + (a(v + 1 = 2X) + 2X + D) X3+ 2(1 — a) Xg — 2(v + 2)58;,

where
0 ln(g’), a=10;

RS, ala—1) #0.
In the final Table 1 these models correspond to My and My, .

h
Returning to (5.31), if (Eﬂ”—) # 0, then equation (5.31) gives

Sep/ p
— 2N—
2]63 - _kS (ph’p.op h’ﬂﬂ( A 1)) /t ( hPP ) . (540)
hS'pp P h-‘:‘pp P
Thus,
(Phpp i~ h.op(g)‘ F— I)) / ( h’pp ) < chd
hSpp P h'Spp p
or

Phopp — Hhspp = kohy,

where kp is constant and H = H(S) is some function. Notice that for H = 0 one

has the contradiction ( P ) = 0. Hence, H(S) # 0. The general solution of
F

Spp
the last equation (up to an equivalence transformation) is

h(p,S) = p*g(pu(S)) + f(u(S)), (5.41)
where p' # 0. Equation (4.7) becomes
pf"+@+1)f =0 (5.42)

Thus,

W(p,p,8) = qop*pIn || + p*9(pS) + f(5),
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and the extension is given by the only generator
—2AX; + (2X — v + 1) X3 + 2X; — 256;.

Here S = p(S), and

¢:In(S), v=0;
QZS'_V, v #0.

In the final Table 1 these models correspond to My and Mys.

f8) =

Case k = -2.

Integrating (5.24), one obtains
¢ =aqp*n|5l, (g0 #0). (5.43)

Substituting (5.43) into (4.3), one gets

1 —A
ki = —k3+ ks ol

Equation (4.5) becomes

2hspoC® = 2q0ksp AN = 1) — ks(20hpp, — 2(A = 2)hy, + qop* T2A(N? ~ 1)).

(5.44)
Assuming that hg,, =0 or
h(p,8) = n(p) + u(S), (4 #0),
equation (4.7) and (4.5) are reduced to the equations, respectively,
kg
(5= 2ETD (5.45)
17
@A = 1)(2ks — k(A + 1) = 2k ("0 — (A~ ), (5.46)

where cg is the constant of integration.
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Let A(A — 1) # 0. Equation (5.46) gives

o (AL (" —n"(A-2))
heb (50 LTS,

Differentiating this equation with respect to p, one has

ks (0 (n"p —1"(A - 2))) = 0.

If (0> 2(@"p~1"(A - 2))), = 0, then 7" = p*~2(G + gA(A — L)vIn(p)) or, by

virtue of equivalence transformations,
1= pMa + qovIn(p)).
Here v and ¢, are constant. Thus,
W(p,5,5) = pMa1 + a0 In(p]4])) + S,
and the extension of the kernel is given by the generators
=20+ ) X1+ (A +2v + 1) X3 + 2Xg + 20508;, 5.

In the final Table 1 this model corresponds to Myg. If (p*(7/"p — 7"(A — 2)))p 5

0, then kg = 0. Thus,
W (p,5,5) = qop* In|p| + n(p) + S,
and the extension of the kernel is given by the only generator
ds.

In the final Table 1 this model corresponds to Mys.

Let A(A —1) = 0. Equation (5.46) becomes

ke(n'"p —1"(A = 2)) = 0.



If " # q1p*?, then kg = 0. Thus

W (e, $,5) = gop* In [4] +n(p) + S,
and the extension of the kernel is given by the generators

-X1 + X3, 9;.
In the final Table 1 this model corresponds to Mygs. If " = ¢;p*2 or
W(p,p,5) = p* Wn(lplp") + 5, (MA-1)=0),
then the extension of the kernel is given by the generators
—X1+ X3, (1= X)X, +2Xg +2)58;, 9.

In the final Table 1 this model corresponds to Myz.

Assuming that hg,, # 0 in equation (5.44), one obtains

A—2 £ — 9}
25 = qA(A — 1)(2ks = ks(r + 1))2— — 2Pl = A =Dy
hs“’" h‘Sﬂp

Differentiating the last equation with respect to p, one gets

QA = 1)(2ks — ks(A + 1)) (”H) = Iy ("hm’ﬂ Ry 2)"*’9) ,

h‘SPP h’Sﬂﬂ hSﬁP

If A(A — 1) = 0, then equation (5.48) becomes

ke (phppp . S g)hpp) =7
P

hSpp hSpp
Let
(Phppp — (A - Q)hpp) =7
hspp hspp P )
then

Phopp + H{(S)hspp = (A — 2)h,,

58

(5.47)

(5.48)

(5.49)

where H = H(S) is a function of the integration. A solution of the last equation

depends on the function H(S).
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Assuming that H = 0, one has (5 =0,
h(p, S) = u(S)p* np + f(1(S)),
where p’ # 0. Equation (4.7) becomes
koM + oA — 1)p*) = 0. (5.50)
If A = 0, then equation (5.50) gives kg = 0. Thus,
W(p, 5, 5) = wlnlpl+SInp+ f(S),
and the extension of the kernel is given by the only generator
X - X;.
If A =1, then equation (5.50) becomes kg f' = 0. For f’ # 0 one has ks = 0,
W (p,5,8) = plas 15| + Slnp) + f(5), (/' #0),
and the extension of the kernel is given by the only generator
X, - X;.
In the final Table 1 these models correspond to Myg and Myg. For f' = 0 one has
W(p,p,5) = p(qon|p| + Sln p),
and the extension of the kernel is given by the generators
X1 —X;, Xs.

In the final Table 1 this model corresponds to Msg.

Assuming that H 7 0 in (5.49), one obtains

h(p, S) = P*(pu(S)) + f(1(S)), (5.51)
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where g’ # 0. Substitution of h(p, S) into (4.7) gives

ka(uf’ + M) =0, (5.52)
If(pf'+ Af) =0or
f= g1 In(p), A=0,
thlfl» A= 11

then

W(p,5,5) = P (a0 lnlpl + $(p5)) + £(3),
and the extension of the kernel is given by the generators

X1 - Xs, (1= X)X +2X;s —250;.

In the final Table 1 these models correspond to Ms; and Msa. If (pf’ + Af) # 0,
then kg = 0.,
W(p,5,5) = p*(goIn|p| + ¢(oS)) + £(S),

and the extension of the kernel is given by the only generator
X — X;.

In the final Table 1 this model corresponds to Ms;.

Returning to (5.48), let A(A — 1) # 0. Assume also that

()
hSPP P 1

which means that
h(p,8) = qou(S)p* +n(p) + F(u(S)),

where p # 0. Then equations (5.48) becomes

ks (0" (en"” — (A =2)1") = 0.
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If (o> Men™ — (A — 2)n") , # 0, then kg = 0. Substituting into (4.7), one obtains
kaf" =o0. (5.53)
Since for k3 = 0 there is no extension of the kernel, one has f” = 0. Thus,
W(p, 5, 5) = gop*(In 8] + S) + n(p) + @, 3,
and the extension of the kernel is given by the only generator
X, — X3 — 0s.

In the final Table 1 this model corresponds to Msy.

If (6> (o™ — (A - 2)1}”)P =0, then 77" = p*~2(VIn p+ G;), where 7 and §;
are constant. Using equivalence transformations, one finds that n = oMqovInp +
1), where ¥ = govA(A — 1) and §; = @M\ — 1) 4 qov(2X = 1). In this case

B 6

by = —(ks — ks™——), ¢° = (23 — kg(A +2v + 1))/(24s)),

and equation (4.7) becomes
(2[%"; 5 kg()\ +2U + ].))f'r = 2&3)\]‘- = (—;-2,

where g; is constant. The last equation can be rewritten in the form

afl_lf:zizl
where
{ o LA+ 20+41
o S = A

Further analysis depends on the constants @ and {. Notice that for the existence
of an extension of the kernel of admitted Lie algebras, one needs to require that
o + 12 # 0. Hence, for a = 0, one has [ # 0, which means that without loss of

generality one can assume that f = 0. In the case f = 0 one obtains

W(p, p,5) = qop*(In(|6lp") + 5) + qup*,
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and the extension of the kernel is given by the generators
X1 — X3 - 35-, 2(/\ s 1)X1 +2Xg — (/\ +2v+ 1)35.

In the final Table 1 this model corresponds to Mss. For a # 0, one has

@u, =0
f:
qe™" [ F£0,
and
KA +v)+ A K 1 &
= —_——_— = — = _ P 1
kl 2A 1 kB 2}‘: k3 2+4/\(A+2V+ ),

where | = ko and ¢, # 0 is constant. Thus, one obtains:

(a) for the function f (§ ) = 25"

W(p,5,5) = @p*((plo") + 5) + q1p* + 05, (@2 #0),
and the extension of the kernel is given by the only generator

~Xy+ X3+ 9

(b) for the function f(S) = g,e"5:

W(p,5,5) = qop In(1plp") + §) + 61> + @™, (g £0),
and the extension of the kernel is given by the only generator

—2(r(A + ) + A) X1 + 26X + (2A + £(A + 20 + 1)) X3 + 2005

In the final Table 1 these models correspond to Msg and Ms;.

A2
Assume that (z ) # 0, then from (5.48) one finds
Spp / p
(ﬁz&%ﬁe&)p A+1
ks = e el (5.54)
qoA(A — 1)(%).0 2
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Since for ks = 0 there is no an extension, then

(m _ Q_i)heg)P

hspp hspp

= const
(hs,.,, )p
or
Phope + H(S)hspp = (A — 2)hy, + vp 2, (5.55)

where v is constant and H(S) is some function. Notice that for H(S) = 0 one

obtains

hop = (vInp+ ﬂ(S))pl\-zy

which leads to the contradiction

=
(” ) =0,
hS.ﬂp p
Hence, one has to assume that H(S) # 0, which gives

Roo(, ) = p*2(F1n p+ Gpu(S)))

or

h(p, 8) = p*(vIn p + g(pu(S))) + f(1(S)),

where y # 0. Equation (4.7) gives f = qou~>. Thus
W(p,,3) = q0p* (ln(lblp") + (oS )) + @S,
and the extension of the kernel is given by the only generator
2+ )X, +2Xs + (A + 20 + 1) X3 — 258;.

In the final Table 1 this model corresponds to Mss.
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Case (k+1)(k+2) #0
Returning to integration of (5.24), if (k + 2)(k + 1) # 0, then one obtains
¢ = qop*p** (5.56)

Substituting (5.56) into (4.3), one has

bk ktAtl
Rk +1) " P2k+1)’

k3 =

and equation (4.5) becomes

k+2 2k + A +2
CSh'S'pp_ + hpp (kl L i# kS ) ) + kgphppp = 0. (557)

+1

Assuming that hg,, = 0, one finds

h(p,S) = n(p) +u(S),

where 1’ # 0. Equation (5.57) becomes

,,( k+2 2k+A+2

;k+1+r’cg 14 )+k3pn = "I (5.58)

Let " # 0, then

k+1 (2k+A+2 pn’”)
k1 b .

\&i Y L "

Differentiating the last equation with respect to p, one gets

VTR
ks (p A ) =0. (5.59)
7
pnl”
If —— = ko = const, then o = q1p*, where v = ky. This gives that
1

W(p, p,5) = 6" +n(p) + S, (0" = qup” #0),

and the extension of the kernel is given by the generators

kv+3k+2X+2
2(k+2)

X3+ Xg + (v +2)595, ds,

k41 2%+ A+2
k-2 k+1

+U)X1+



65

where 7" = g1p*, S = u(S) and ¢, # 0. In the final Table 1 this model corresponds
to Msg, (kz + 22 # 0)
If (‘”’ ) # 0, then ks =0,
n

v

W(p,5,5) = qp*6** +n(p) + S,
and the extension of the kernel is given by the only generator
5.
In the final Table 1 this model corresponds to Mgg, (k? + A% # 0).

Considering (5.58), let 7 = 0. Without loss of the generality one can

assume that = 0. Equation (4.7) gives

s_ K k+2 A o
¢ = M'(k‘k+1+k8/c+1 -

Thus,
W(p, 5, 5) = qop0*** + S,

and the extension of the kernel of admitted Lie algebras is defined by the generators

k k2. k+i19 XA A
Xi——— R -85, @ Xe\= 153885, 8.
! 2(k+1)X3 k175 2(k+1)X3+ s\ P %

In the final Table 1 this model corresponds to Mgy, (k% + A? # 0). Returning to
(5.57), assume that hg,, # 0. Then

h k+2 2 A2 h
= (gt th ) kG
Spp

¢°=

hS'p.o

Differentiating this equation with respect to p, one finds

h,,,,) ( ko2 2k+A+2) ph,,p,,)

k k. + k| £ ] =0. 5.60
(h_gpp p 1k+1+ # E+1 % h.spp . ( )
If (ﬁ) # 0, then

hSPﬂ p

A
A k8k+2 k+1 (JL)
P

hspp



66

Extension of the kernel occurs only for

m)
hsgpp P

oo
hsPP P

= const,

which means that

Phopo — H(SYhg,, = Vh,,,
where H(S) is some function and v is constant. Notice that for //(S) = 0 one has
hoo(p, S) = P;#(S)

/
which leads to the contradiction (}:ﬁ) = 0. Hence, H(S) # 0, and then
Sep/ p

hoo(p, S) = ng(PF‘(S)L

or

h(p, 8) = p*9(pu(8)) + f(1(S)),
where ¢ # 0 and (2**!¢/(2))” # 0. Equation (4.7) leads to the condition
pf' +vf=aq,
where g; is constant. The general solution of the last equation depends on v:

g2 In(p), v =0,

@u’, vr#0.

flu) =

Thus, setting 5 = u(5), one gets
W(p, £,5) = a0p* " + p"9(p3) + £(5),

and the extension of the kernel of admitted Lie algebras is defined by the generator

Cv(k+1)+ A k(v +1)+2X+2
k+2 ! 2(k+2)

X3+ Xs — 53;.

In the final Table 1 these models correspond to Mgz and Mgs, (k* 4+ A2 # 0).
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It (—’-‘—) = 0, then h(p,S) = u(S)(n(p) + F(u(S))), where 74 # 0.

Spp/ p
AN
() o

Equation (5.60) becomes
If ( e ) # 0, then kg = 0, equation (4.7) leads to the equation
7"

pf’ +2f =0.

A solution of the last equation is f(u) = ¢;/u + ¢, where ¢y and ¢; are constant.

Without loss of generality, one can assume that ¢; = ¢, = 0. Thus,

k k+2u
ky = —hi———m =k
? Yk+ 1) ¢ Er1p

and

W(p,p,S) = qop**** + Sn(p).

The extension of the kernel consists of the generator
20k 4+ 1) X, — kX3 = 2(k + 2)S8;.

In the final Table 1 this model corresponds to Mgg, (k* + A2 # 0).
It Eg,r = ko = const, then 0 = §,p""%, where v = 2(ky + 1). One can
7

choose the function 7(p) as follows

In(p), v=0,
=13 pla(p), v=1,
o, vip—1) #0.

This reduces equation (4.7) to the equations
v=0: apf' =b+gut,
v=1: auf +bf =g, (5.61)

v(v = 1) #0: apf +uvbf = gopt.
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where a = ki(k + 2) + ks(A+v(k +1)), b = kg(k + 1) and G is constant. Notice
that the condition a? + 5° = 0 leads to the relations k; = 0 and kg = 0. These
conditions do not allow an extension of the kernel of admitted Lie algebras. Hence,
one has to assume that a® + b% # 0.

Let us consider the case v = 0, where 7 = In(p). In this case a # 0,
because otherwise b = 0. Using equivalence transformations, the general solution

of equation (5.61),-¢ has the representation:
f = BIn(u) + g2,

where 3 and ¢, are constant. Substituting the representation of the function f(u)
into equation (5.61),_g, one finds that Sa = b and g, = 0. Therefore,

_ k+1-)8 _ Bk B
TR DR T 2k 0k +2 T %k k1

ky

and

W = qp*p**? + 8 (ln (pgﬁ) + qz) ,
where S = (S). The extension of the kernel of admitted Lie algebras is defined
by the only generator -

k X k42N 2) —%
+1 ﬁAX1+6(+ + 2)

k+2 o P

In the final Table 1 this model corresponds to Mgs, (k% + A% # 0). In other two

cases v = 1 and v(v — 1) # 0 one has to solve the equation
apf +vbf =Gt (v £0). (5.62)

By virtue of equivalence transformations the function f is equivalent to the func-

tion f = f—ru~!, where r is constant. The change f = f+7ru~! reduces equation

(5.62) to the equation

apf +vbf = (G + (a — vb)r)p .
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This means that for a — vb # 0 one can assume in (5.62) that § = 0. Therefore
the analysis of solutions of equation (5.62) is reduced to the study of solutions of

either the homogeneous equation
apf' +vbf =0, (5.63)
or the nonhomogeneous equation
pf' +f=q@u™, (g#0) (5.64)

The function f = 0 is the trivial solution of equation (5.63). In this case

ky and k3 are arbitrary. Thus
W(p, 6, 8) = qop* "2 + Sn(p),
and the extension of the kernel consists of the generators
2k+1) X, —kX3—2(k+2)S8s, (k+A+1)Xs+2(k+1)Xs - 20\ +v(k+1))583).

Here S = u(S). In the final Table 1 these models correspond to Mgg and My, (k2+
A2 £ 0).

The only nontrivial solution of equation (5.63) has the representation
F) =i’ (12 #0, B#-1).
Substituting the representation into equation (5.63), it becomes
Blkr(k +2) + ks(X +v(k + 1)) + kg (k +1) = 0. (5.65)
If =0, then kg =0, and
W(p, 5,8) = qop**** + S(n(p) + q2),

with the extension

2(k + 1) X1 — kX3 — 2(k + 2)50;.
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In the final Table 1 these models correspond to Mgy and My, (k% + A% # 0). If

B # 0, then equation (5.65) gives

BA+v(k+1))+v(k+1)

ky = —k
! s Blk+2)
Thus,
. Blkv + k+2X+2) + kv CS—kZE
3 — A8 2(k+2)ﬁ ] = Sﬁ”!?

and the potential function is
W (p, 5, S) = qup**** + S(nlp) + 57), (28(8+1) #0).

The extension of the kernel of admitted Lie algebras is defined by the only gener-
ator

2[3(A +uv(k+1))+v(k+1)

(k n 2) (X3 - Xl) - ()BV - ﬁ 2% V)Xa + ZﬁXg +‘2b’5’3§

In the final Table 1 these models correspond to Mgg and Mz3, (k% + A% £ 0).
The representation of the general solution of equation (5.64) is f =

g2~ ' In(p). Substituting the representation into equation (5.62), it gives
¢z =ags, a—vb=0.

Hence,

Thus,

W(p, 5, 5) = gop* 52 + Snlp) + ¢21n(S), (g2 #0),

and the extension of the kernel is defined by the generator
2X(X3 — X1) + (k + 2)(X3 + 2X; — 2v595).

In the final Table 1 these models correspond to Mgg and Mz,, (k? + A% #0).
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5.0.4 dim(Span(V)) =0
In this case the vector
(BBossr 2bBss0+ bp)y ~(6Bpss + PDsip + )
is constant. This condition implies that
¢ = qop”.

Substituting ¢ into (4.3) and (4.5), one gets, respectively,

1
= -k
k3 9 8
C5hspp + 2kihy, + kg(phiyp+ 2h,,) = 0. (5.66)
Assume that hg,, # 0, then
¢S = —2aky~ ksb, - (5.67)
where a = e , b= M_ Differentiating (5.67) with respect to p, one
Spp hé‘n.o

obtains

2kya, + kgb, = 0. (5.68)

If a, = 0 then, h(p,S) = n(p)u(S) + fF(u(S)), where ny/ # 0. Equation
(5.68) becomes
ks (p i ) =0
7

N
If (,OT? ) # 0, then kg = 0, and equation (4.7) becomes

/"

ki f" = 0.

Since for k; = 0 there is no extension of the kernel, without loss of generality one

can assume that f = 0. Thus,

W = p*q0 +1(p)S,



72

and the extension of the kernel is given by the generator
X, — 250;,

where S = p(S). In the final Table 1 this model corresponds to Mgy, (k=X=10).

If ( p;:”)’ = 0 or n” = p*~2. Finding the function 7(p) depends on the
value of v.

Let v(v — 1) # 0, then n = p* and equation (4.7) becomes

2kypuf” + vkg (uf” + ') = 0. (5.69)
If f =0, then f = ¢;u and equation (5.69) is reduced to the equation
kgq = 0.
Hence, if ¢; # 0, then kg = 0 and
W=+ (" +a)S, (a#0),
the extension of the kernel is given by the generator
1 X — 238z,

In the final Table 1 this model corresponds to M7y, (k= A =0).

If g, = 0, then kg is arbitrary, and
W = glq0 + p“S.
The extension of the kernel is given by the generators
Xy — 2885, X3+ 2Xg — 2v58;.

In the final Table 1 this model corresponds to My, (k= A = 0).

If f” # 0, then equation (5.69) gives that

uf" = Bf =0, (u+#0),
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where /3 is constant and

s = —ykg%. (5.70)

Thus,
W = i’q0+ p"S + £(3),
and the extension of the kernel is given by the generator
—v(B+1)X,+ X3 +28Xs + 20535, (B #0).
Here
qi 111(5'), ﬁ = *1,
QI§ﬂ+la 6 % -

In the final Table 1 these models correspond to Mz and Mys, (k= A =0).

For v = 1 one has n = pln(p). Further analysis of this equation is similar

to the previous case:
W = +S(plnp+aq), (@ #0): X, — 258,
W = gop® + Splnp: X; — 25‘3;, X3 +2Xg — 2)\5‘33,
W =qop* + Splnp+ f(8) - —(k+1)Xy +kXs + 2kXs + 2595, (k#0),

where

aln(8), p=-1,

aSP, B -1,
and q; # 0. In the final Table 1 these models correspond to Mgz, Mes, Mgg and
Mgg, (k= A = 0), respectively.

Let v = 0, then n = In(p), and equation (4.7) becomes
by =2%uf".

This equation gives

ka(uf") = 0.
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Since for k; = 0 there is no extension, one has that pf” is constant or after using

equivalence transformation, one finds
f = u(BIn(y) + g2)-

Thus,
W = 00 + S(In(pS?) + g2) : X1+ B(Xs + 2Xs) — 258;.

In the final Table 1 this model corresponds to Mgs, (k= A = 0).

If in equation (5.68) a, # 0, then there exists a constant v and a function

H(S) such that
b—va+ H(S)=0

or

Phiopp + H(S)hsp, = (v — 2)hyp,.

Hence,

k;l_ = U]Cg/?.

Notice that if H = 0 then a, =0, hence H # 0. In this case
h = p"g(p(S)) + F(1(S)), (5.71)
where y' # 0. Equation (4.7) becomes
uf"+ v+ 1)f =0. (5.72)

Thus,

W = qop® + p%g(pS) + (5) : SoXi+ X5 +2X5 — 25'35-.
In the final Table 1 these models correspond to Mgy and Mgz, (k = A =0).
If hs,, = 0, then

h =n(p) + u(S),



7

where ¢ # 0, and equations (4.5) (or (5.66)) and (4.7) become, respectively,

2k1n" + ks(pn™ + 21") = 0. (5.73)
(Cu) = —2kp (5.74)

Equation (5.74) gives
¢% = (—2k1p + o) /¢t (5.75)

Hence, if " = 0, then one can assume that n = 0. In this case

W = qp® + 35,
and the extension of the kernel is given by the generators

X, — 2585, X3+2Xs, 85

In the final Table 1 this model corresponds to Mg;, (k= X =0).

If n" # 0, then equation (5.73) leads to

1
ki = —ks (”’7” + 1) _
2n

This gives that

For pn’ = vn” one has

le £ kg(!/ - 2) =/

In this case

W =g +n(p)+ 3, 0" =aqp"),

and the extension of the kernel is given by the generators

—(v+2) X1+ X3 +2Xg + 2(v + 2)585, 85
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W(p, 5, 5) Extensions Remarks
M, | qop~ 5" +p°S X1 —250s5, X2, X3—Xg -
M, p—3‘§23+q1p33'k Xz, ‘X3 —.Xg, Xg—(k+ I)Xl +2365 .
M; | p735%S + p°u(S) X2, X3 —Xg ¢ #aS*
My P-SKPS X1, X2, X3— Xg, Xg+2S585 )
Ms | ¢lp.p)+S ds
Mg | wlp)p*+S ds, X; —258s
Mz | olp)p’ +n(p) +S 8s 7' #0
Mg | p(p)d”" +u(p)S X1 — 2585 7" #0
My | o(p)plnjsl+ S X3 — 2505, Os
Mo | wlp)pIn|p[+n(p) + S ds 7 #0
My | plp)oln|pl + n(p)S X3 — 25385 7' #0
My | {(@1p+go)In{p| +n(p) + S X3 - X1, s 9%+ #0
Mz | plp)Infol+n(p) + S Js " #0
Mia | (@1p+q)ln || + h(p, S) X3 — X1 | (95 +4q1)hpps #0
Mis | olp)(Inds[+ S) + n(p) + .S X3 -X1+38s ¥ #£0
Mie | 000" + S kX5 —2(k +1)X; +2(k + 2)58s, s kk+1)(k+2)#0
Mz | o(p)p" +n(p) + S ds 7' #0 -
Mys | @(p)p*** + n(0)S kX5 —2(k+1)X, +2(k +2)59s 7" #0
Ms | p*9(pe") + n(p) + S Jds , .
My | 9(pp®) + @10 + S —2kX; + (2k + 1) X3 4+ 2X,, ds
Moy | po(pp®) +quplnp + S (E+1)(X3 — X))+ Xs + S35, Os
Maz | pg(pp*) + S —2(k+ )X + (ZE+ A+ 1) X5
+2Xg +2A58s, Os AMA—-1)#0
Moz | g(pp®) + Slnp —2kX) + (2k+ 1) X3 42X,
Maq | pg(pp®) +Splnp (k+1)(Xs = X;) + X
Mas | pMa(6p5) + S) =20k + A) X1+ (2k + X+ 1) X3 + 2X; AMA-1)#0
Mas | g(pp") +Q(pS) + g, In 5 —2kX; + (2k + 1) X3 + 2Xs — 2505
Maz | p*a(pp") + Q(pS) —2(k + X)X, + (2k + X + 1) X3 + 2X5 — 2585 A#0
Mg | qopp* In|p|+ S X3 —258s, Xg—AX;+(2A+1)53s, Os .
Mag | gopp” In|p| + n(p) + S 2Xg 22X +(2A—v - 1)X;3+2(r +2)59s, 95 | 7" =qp* #0
M3o | ‘qopp* gl + (o) + S ds i 7 #ap”, 1" #0
May | gopp*In|j| + 1(p)S X3 —250s 7' #£0 '
Mas | gopp™ Inlp| + Splnp X3 — 2585, —AX)+ Xg+2)\S95
Mas | gopp™ In]p| + S(pln p + q1) X3 —250s a#0
My | qopp*In|g| + Splnp+¢gzInS 2(Xg — XX + AX;3) + X3 — 2585 g2 #0
M3ss | qopp’ In|g| + Spln p+ q25° 2(1 -*(1)(X3—1\.X1+/\X3)+X3~23§é_ grafa— 1) #0
M3s | gopp” In|p| + S(lnp + q1) X3 — 25085
M7 | qopp* gl + S(np+ q1) + aSInS | —20aX; + (2ar + 1)X; + 2aXs + 2(a — 1)505 a#0
Mag quJpA].ll P +Sp"+2 X3 — 2595, —-AX; +X3+(2:\7—V—1)333 (U+2)(U+1)7£0
M3y | gopp” gl + S(0* ¥ + q1) X3 — 2585 a(v+2)(v+1)#0
My | gopp* Inlp| + "7+ ¢ In S —2XX1 + (2A + 1) X3 + 2Xg — 2(v + 2)505 (v +2)(r+1) #0
Mg | gop Infp| + Sp" T2+ g, 59 20 - DX1+ (a(v+1—2X) + 22 + 1) X3 C+2)+1)#0,
+2(1 — a)Xg — 2(v + 2)595 gafae—1)#0
M42 qOﬁpA In ipl + Q(PS) + g2 l!lS —2AX1 + (2/\ + I)Xg il 2X3 = 2365
Mgz | gopp” Infp| + p*9(pS) + 25 —22X1 + (2A — v+ 1) X3 + 2Xg — 2505 v #0
My | p*Ma + @oIn(p*]8])) + S “2A+v) X1+ (A+ 20+ 1) X5
+2Xg + 20835, 8s
Mas | gop* Inlpl+7(p) + S 3s 1 # p (a1 +g21np)
Mas | qop* Inlpl+n(p) + S X3 - X1, 85 7" # ap Y,
| AA-1)=0
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—(k+2)(Bv-B+v)X;3
+2(k + 2)(BXg + vS3s)

: Table 2: Continuation of Table 1 i
N | W(p,5,5) Extensions Remarks
Mgy qup*ln(lﬁ|p")+3 X3 — X, (1 HA)X] +2Xg +2)\333, 65 A(A— 1):0
Mas | goln|s]+ Snp + f(S) X3 — X, '
Mg | p(galn|p] + STnp) + £(S) X3 —-X; f'#0
Mso | plgoln|s| + Slnp) Xz — X1, Xs '
Msi | goln|p] + ¢(pS) +q1InS X3—-Xi, X1+2Xg—258g (z¢(2)')" #0
Msz | p(goIn]o[+ ¢(pS)) + ¢S T X3 — X, Xg— S35 (z¢(2))" #0
Ms3 | p*(goln]p] + ¢(0S)) + F(5) X3 —-X; AA-1)=0,
(SF'+Af)Y #0,
' (z¢(2)')" # 0
Msq | q0p™(In ]l + 8) +nlp) + 0, S X3 — X; +8s AA-1)#0,
7" #p* *(vinp+ g2)
Mss | qop*(n([ple¥) + S) + qup” X3 — Xy + s, AMA-1)#0
. 2(A - 1)X; +2Xg — (A + 20 4+ 1)3s
Mss | g0 (In([plp*) + S) + q1p* + @25 | X35 — X; + 85 2A(A-=1)#0
Msz | gop™(ln([gls”) + S) + qip™ + 26> | —2(x(A + V) + A) X1 + 26X + 2005 @A -1)#0
. * FRA+ (A +2v + 1)) X5
Msg | qop™(In([4]p*) + 9(pS)) + g25 =~ “2(A 41X+ (A +20+ 1) X3 +2X — 2505 | A= 1) £0,
: _ E ; (z'\:"lg’(z))" :‘é 0
Msg | gop? 2+ n(p) + 5 2@k +A+2+ (k+ 1)) X, (k+1)(k+2) #0,
+(kv + 3k + 22+ 2) X3 7 =qp” #£0
+2(k +2)(Xs + (v + 2)S8s, 85
| Meo | 2P +0(p) + S 3s F+DE+2) #£0,
7" Faup’, " #0
Me | gop 2+ 8 2(k +1)X; — kX3 — 2(k + 2)58s, (k+1)(k+2)#0
' (k+A+1)X3+2(k + 1)Xg — 2A53s, 85
Mez | gop* "% + g(pS) + ¢2In § —20X) + (k+20+2) X3+ 2(k +2)(Xs — S0s) | (k+ 1)(k+2) #0
_ (zg'(z))" #0
Mes | qop”0**% + p*g(pS) + @25~ 20+ D)+ X)X + (k(v + 1)+ 22+ 2) X3 | vk + )E+2)#0
+2(k + 2)(Xs — 505) (z"*1g'(2))" #0
Mes | o™ 6" 2 + Sn(p) 2(k + )X; — kX3 — 2(k + 2)505 (k+1)(k+2) #0,
0" #qp”, 1" #0
Mes | qop* 57 + S(In(pS7) + ¢2) 2k +1-BNX, + (Bk+22+2) - )X, (k+1)(k+2)#0
+2(k + 2)(BXs — S3s)
Mes | 90p* 572 + pln(p)S 2(k + 1)X; — kX3 — 2(k + 2)S0s, k+D)(k+2) £0
2)\(.X3 — Xl) + (k + 2)(X3 +2Xg — 2535)
Mez | q0p™6*** + S(pln(p) + 1) 2(k + 1) Xy — kX3 — 2(k + 2)585 g2 #0, ‘
/4 (k+1)(k+2) #£0
Mga (}g;)ﬂ"ﬂik_'I'2 + Splnp+gInS 20(X;3 - X,) +(k+2)(X3+2X3*2535)‘" g2 #0,
(k+1)(k+2) #0
Mes | gop” "% + S(plnp + ¢257) 28k + A+ 1)+ k+ 1)(X3 — X;) B2 #0,
—(k+2) X3+ 2(k + 2)(BX; + S85) (E+1)}k+2)#0
M70 QQP][}’C+2 + Sp" 2(k + I)Xl - kX3 ~ 2(}\‘. + 2)365; v % 0,
(E+A+1)X3+2(k+1)Xs (E+1)(k+2)#£0
—2(A +v(k+1))Sds) y
My | gop? 6" T+ S(p¥ + q2) 2(k + )Xy — kX3 — 2(k +2)50s a2 #0,
(E+1)k+2)#0
My | @op* "7+ 50 + 2 In S 2A (X3 — X)) + (k + 2)(X3 + 2X5 — 2v505) g2 #0,
(k+1)k+2)#0
Mrs | gop*p*+? + S(p” + ¢, 5%) 28(A+ v(k +1)) + v(k + 1)(X3 — X))

g2 # 0,
(k+1)(k+2)#0
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