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Abstract

Both the neat and the gentamicin sulfate (GS)-loaded silk fibroin (SF)/gelatin
(Gel) blend scaffolds were fabricated by freeze drying method. The SF/Gel scaffolds
were prepared by various blending ratio of SF and Gel solutions (i.e., 0/100, 30/70,
50/50, 70/30 and 100/0). 0.005 mg:mL™" of GS powder was then added to prepare the
GS-loaded SF/Gel blend scaffolds. These scaffolds were characterized for their
morphology, pore size, mechanical property, water swelling and weight loss. The
release characteristics of GS from the GS-loaded SF/Gel blend scaffolds were carried
out in phosphate buffer solution. The antibacterial activity and the indirect
cytotoxicity of these scaffolds were also investigated. From the results, the
interconnected porous structure of these scaffolds was obtained. The pore size of the
neat and the GS-loaded SF/Gel blend scaffolds ranged between 60 and 138 pm.
Increasing SF content and addition of GS in scaffolds caused the compressive
modulus of the scaffolds to decrease. Moreover, the water swelling and weight loss
behaviors of these scaffolds increased with increasing submersion time. The
cumulative amount of GS released from the GS-loaded SI/Gel blend scaffolds
decreased with an increase of SF content in scaffolds. All scaffolds showed high
activity against the growth of S. aureus, S. epidermidis, M. luteus, B. cereus, and P.
aeruginosa. Lastly, all the GS-loaded SF/Gel blend scaffolds were proven non-toxic
to NHDF cells except for the GS-loaded SF/Gel blend scaffolds at blending ratio of
100/0.

Key words: Silk Fibroin, Gelatin, Scaffolds, Gentamicin Sulfate, Wound Dressings
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CHAPTER 1
INTRODUCTION

1.1 Statement and significance of the problem

At present, Thailand has to import medical materials from abroad for the
needs of people in the country. Since the cost of the importing medical materials is
high, then this can not meet the needs of people who have low income. Thus, many
researchers are interested to develop the medical materials or alternative materials to
reduce the import of medical materials from abroad. In this research, silk fibroin (SF)
and gelatin (Gel) are used to fabricate the medical materials. Since these polymers
have several properties such as non-toxic to human cells, biodegradable,
biocompatible, and good water absorption. Moreover, SF is available in Thailand,
especially the eastern and northern parts of Thailand, and also has healing properties
for wound. In addition, Gel has low cost and the equivalent properties of collagen.
The addition of gentamicin sulfate (GS) which has the antibacterial properties in these
materials was investigated to study the release characteristics of GS from these
materials. Moreover, the cytotoxicity of these materials was investigated. If this
research is successfully as researcher expected, it can lead to further research in order
to obtain the low cost and suitable medical materials for patient. It can also reduce the
import of the medical materials from abroad. Moreover, it can further develop
medical materials from other materials and may be a combination of technology and
traditional knowledge, such as Thai herbs, which may cause the new knowledge and

infinite development.

1.2 Objectives
1. To fabricate GS-loaded SF/Gel blend scaffolds
2. To study the release characteristics of GS from GS-loaded SF/Gel blend
scaffolds
3. To study the antibacterial activity and cytotoxicity of GS-loaded SF/Gel blend
scaffolds



CHAPTER 2
LITERATURE REVIEWS

Scaffold is a one type of wound dressing that is a substrate for the implanted
cells and a physical support to control the restoration of a tissue or replacing an organ
(Parveen, et al., 2006). In addition to facilitating cell attachment, promoting cell
growth, and allowing the retention of differentiated cell functions, the scaffold should
be biocompatible, biodegradable, mechanically strength, malleable, and highly porous
with a large surface/volume ratio (Chen, ef al., 2002). Various natural and synthetic
polymers can be used to produce the scaffolds. Natural polymers have been widely
used for biomedical applications including collagen, fibroin, gelatin, chitosan,
alginate, and hyaluronic acid (Adekogbe, ef al., 2005; Woei, et al., 2001). While
synthetic polymers also have been widely used such as polycaprolactone (PCL),
polylactic acid (PLA), polyglycolic acid (PGA), and poly(lactide-co-glycolide)
(PLGA). Moreover, several processing techniques have been developed to fabricate
polymeric  scaffolds including  fiber bonding, electrospinning, solvent
casting/particulate leaching, gas foaming/high pressure processing, and freeze drying
(Gunatillake, et al., 2003).

Freeze drying is based on the formation of ice crystals that induce porosity
through ice sublimation and desorption. The kinetic of the freezing stage controls the
porosity and the interconnectivity of scaffolds by removing water or solvent from
emulsion to yield the highly inter-connected pores of scaffolds (Liapis, ef al., 1996).
This process can prepare the porosity up to 90%, and diameter of scaffolds in a range
of 15-35 pm. Advantages of this process are highly porous structure and highly pore
interconnectivity. But it is limited to small pore size (Whang, et al., 1995). In 1999,
Kang, et al. studied the fabrication of porous gelatin scaffolds by using water as a
porogen and freeze drying technique. The porous structure of scaffolds can be
controlled by varying the freeze drying condition. The fast freezing process produced
the scaffolds with small pore size, while large pore size of the scaffolds was obtained

from the slow freezing process.



Controlled release systems are used to improve therapeutic efficiency and
safety of drugs by delivering them a rate dictated by the need of the physiological
environment over a period of treatment to the site of the action (Kenawy, et al., 2002).
The aims of controlled drug release are improving the effectiveness of drug therapy,
increasing therapeutic activity compared to the intensity of side effect, reducing the
number of drug administration required during treatment, or eliminating the need for
specialized drug administration. Human skin consists of two distinct layers: the
stratified vascular cellular epidermis and an underlying dermis of connective tissue. A
fatty subcutaneous layer resides beneath the dermis. Hairy skin develops hair follicles
and sebaceous glands, and the highly vascularized dermis supports the apocrine and
eccrine sweat glands, which pass through pores in the epidermis to reach the skin
surface (Barry, et al, 2004). With respect to drug permeation, the most important
component in this complex membrane is the stratum corneum, or horny layer, which
usually provides the rate-limiting or slowest step in the penetration process.

The mechanisms of drug transportation by crossing the intact skin have not yet
been completely elucidated. However, possible macro-routes may comprise the
transdermal pathway or via the hair follicles and sweat glands. The appendageal route
may be significance for short diffusion times and for polar molecules. Until recently,
it was believed that, for polar molecules, the probable route was via the hydrated
keratin of the corneocyte. However, it now seems more probable that the dominant
pathway is via the polar region of intercellular lipid, with the lipid chains providing

the nonpolar routes shown in Figure 2.1 (Langer, ef al., 2004).
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In 1984, Wise, et al. reported that the relative importance of these routes
depends upon numerous factors, such as the time-scale of permeation, the
physicochemical properties of the penetrant (e.g., pKa, molecular size, stability,
binding affinity, solubility, and partition coefficient), integrity and thickness of the
stratum corneum, density of sweat glands and follicles, skin hydration, metabolism,
and vehicle effects.

Most modern dressings are made from polymers which can serve as carriers
for the delivery of drugs to wound sites. The polymeric dressings have been employed
for controlled drug delivery to wounds including hydrogels such as poly(lactide-co-
glycolide), poly(vinyl pyrrolidone), poly(vinyl alcohol) and
poly(hydroxyalkylmethacrylates), polyurethane-foam, hydrocolloid and alginate
dressings. Other polymeric dressings reported for drug delivery to wounds comprise
novel formulations prepared from polymeric biomaterials such as hyaluronic acid,
collagen, and chitosan. Synthetic polymers have been employed as swellable
dressings for controlled drug delivery including silicone gel sheets and polylactic acid
(Boateng, et al., 2007). Composite dressings comprising both synthetic and naturally
occurring polymers have also been reported for controlled drug delivery to wound
sites (Sakchai, er al., 2006). The modern dressings for drug delivery to wounds may
be applied in the form of gels, films and foams, while, the novel polymeric dressings
produced in the form of films and porous sponges such as freeze-dried wafers or discs
or as tissue enginecred polymeric scaffolds (Kumar, et al., 2004). Zhang, et al.,
(2002) prepared macroporous chitosan scaffolds reinforced by calcium phosphates
(CaP) particles such as p-tricalcium phosphate (§-TCP) and CaP invert glasses using a
thermally induced phase-separation technique. These porous composite materials
were loaded with gentamicin sulfate (GS) by immersing them in GS-containing PBS
solutions. The results showed that in comparison with GS-loaded pure chitosan
scaffolds, the initial high burst release of GS was decreased through incorporating
CaP crystals and glass particles into the scaffolds, and the sustained release for more
than three weeks was achieved. The highest sustained release was observed from the
particle-containing composite, which was suggested to occur owing to a higher extent
of chitosan cross-linking. The cells attached and migrated on these scaffolds,

suggested that these scaffolds are good cellular compatibility (Habraken, ef al., 2007).



A new design of a tissue engineering (TE) scaffold with controlled drug-delivery
capability has been developed by Shi, et al., (2009). The scaffold is based on
mesoporous silica HA (HMS HA) composite particles used as fillers in poly(lactic-
co-glycolic acid) or PLGA microspheres. HMS HA particles were produced using
dodecylamine as a template and GS-loaded PLGA microspheres were prepared using
a double emulsion solvent evaporation technique (water/oil/water). PLGA/HMS HA
GS composite microspheres were prepared using a single emulsion solvent
evaporation method. PLGA or PLGA/HMS HA GS microsphere sintered scaffolds
were subsequently fabricated by pouring PLGA or PLGA/HMS HA GS
microspheres into cylindrical moulds, and subsequently sintering at 70 °C for 2 h. The
results showed that the presence of HA in PLGA/HMS HA scaffolds could balance
the decreased pH values caused by the acidic degradation product of PLGA.
Moreover, HMS HA improved the cytocompatibility and bioactivity of PLGA. It was
also claimed that the compressive strength and elastic modulus of PLGA/HMS HA
scaffolds were higher than those of pure PLGA scaffolds, showing similar mechanical
properties to human cancellous bone. In vitro drug-delivery testing in the
simulated body fluid (SBF) of the PLGA/HMS HA scaffolds showed that PLGA
reduced the GS release from HMS HA particles, and the release lasted for nearly one
month.

Silk is a natural polymer produced by the silk worm and their major
components are fibroin and sericin that are a protein. Silk fibroin (SF) consists of
heavy (350 kDa) and light (25 kDa). In the heavy chains compose of glycine, alamine
and sericin residues, which can be formed into f-sheet crystalline structure. SF can be
used in biotechnology and biomedical materials because it has various properties such
as biocompatibility, mechanical strength, high thermal stability, microbial resistance,
and biodegradability properties (Gil, ef al., 2007).

Gelatin (Gel) is a natural polymer denatured form of collagen and contains a
number of functional groups such as amino acids that found in animal tissue. Collagen
is the major protein component of extracellular matrices in animal (ECM) (Sai, ef al.,
2000). Collagen has highly antigenicity due to its animal origin but gelatin has
relatively low-antigenic and lower cost (Lien, et al., 2008). This material has the

limitation of low mechanical strength and is effectively used only as incorporated



component with others polymers to modify the biological or mechanical properties
(Ding, et al., 2005). Gelatin has been blended with other organic or inorganic
biomaterials to fabricate the dehydrate form such as 3-D scaffolds, hydrogels, and
films. There are several properties of gelatin such as biological origin,
biodegradability, and biocompatibility. Thus, it is suitable used for wound dressing,
drug delivery system, and tissue engineering applications (Zhong, et al., 2010).

Gentamicin sulfate (GS) is an aminoglycoside antibiotic for treating many
types of bacterial infections that caused from gram-negative bacteria such as
Pseudomonas aeruginosa (Lu, el al., 1996). Suzuki, er al., (1998) investigated
releasing of gentamicin with P. aeruginosa that found in the infected wound, by
blending gentamicin with polyvinyl alcohol derivative (PVA) to occur hydrogel.
Gentamicin was release at specific times and location where P. aeruginosa infection
occurs. This ability indicated the selective release of gentamicin in P. aeruginosa-
infected wound fluid and important to reduce its growth in vitro. A recent research,
GS-loaded into silk fibroin/elastin blends scaffolds were fabricated to treat burn
wound as wound dressing. This study had shown that the releasing of GS increased
with an increase in the elastin content because it was affected to higher pore size of
scaffolds (Vasconcelos, ef al., 2012).

From these literature reviews, SF and Gel are suitable for using as medical
materials. In 2007, Gil, er al. fabricated Gel/SF films by solvent casting and then
treated these films with methanol to induce SF structure from amorphous to
crystalline region resulting in the insoluble of Gel/SF films in water. Fan et al. have
fabricated Gel/SF scaffolds for use in ligament tissue engineering. In this research,
study the feasibility of using co-culture system to induce the differentiation of
Mesenchymal stem cells (MSCs) for fabricating the tissue-engineered ligament in
vitro. From results, the MSCs were distributed uniformly throughout these scaffolds
and exhibited good cell viability. The MSCs in co-culture system can differentiate
into ligament fibroblast. The effects of different freezing temperature on silk fibroin
pore structure were investigated to study cell proliferation and migration (Mandal, ef
al., 2009). The results showed that the rapid freeze drying method fabricated highly
interconnected porous scaffolds for using in tissue engineering. The pore size,

porosity and interconnectivity of scaffolds have affected to the cell proliferation and



migration on scaffolds. Mandal, et al. prepared multilayered films based on silk
fibroin and gelatin for use in controlled drug release. The films were investigated for
release using trypan blue, FITC-inulin and FITC-BSA as model drugs. The results
showed that the release characteristic of compounds exhibited dependence on
multilayer film degradation for sustained release. From results, the silk fibroin/gelatin
multilayer films are good candidates fro the controlled release of a wide spectrum of
bioactive molecules (Mandal, ef al., 2009). Moreover, Mandal, et al. fabricated novel
3-D sericin/gelatin scaffolds and 2-D films using non-mulberry Antheraca mylitta silk
cocoon sericin protein. These materials were characterized and optimized for
biomedical applications. The results showed that blended sericin/gelatin 3-D scaffolds
were highly porous with an optimum pore size of 170 % 20 pm. In addition, these
materials enhanced cell attachment and proliferation making them suitable for use in

tissue engineering applications (Mandal, ef al., 2009).



CHAPTER 3
METHODOLOGY

3.1 Materials

The raw silk cocoons of mulberry bombyx mori were obtained from
Ubonratchathani province (Thailand). The type A gelatin (MW = 1,400,000 g/mol)
from porcine skin and glutaraldehyde solution were purchased from Fluka Analytical
(Switzerland). Gentamicin sulfate (GS) powder was obtained from Shijiazhuang

Pharm-chem Technology (China).

3.2 Preparation of SF solution

Silk cocoons were cut into small pieces, boiled with Na,COj; for 45 min twice
to degumming and then washed it with deionized water in several time to remove
sericin out. Degummed silk was dissolved in CaCl,: EtOH: Water (1:2:8) solution at
85 °C for 3 hours. SF solution was obtained and dialyzed with deionized water for 2-3
days by changing deionized water every 6 h to remove solvent. SF solution was
centrifuged at 5,000 rpm for 20 min at 10°C to remove lipid precipitate. Then, SF
solution was lyophilized by using freeze drying method for 20 h. Fourier transform
infrared spectroscopy (FTIR) analysis of the obtained silk fibroin was carried out
using an FTIR spectrometer (Spectrum GX, Perkin-Elmer) in the spectral region of

4000 400 cm™ with 4 cm™ resolution.

3.3 Indirect cytotoxicity of GS

The human dermal fibroblast cells were grown in Dulbecco s Modified
Eagle s Medium (DMEM) supplemented with 10% fetal bovine serum, 2mM L-
glutamine, 100 unit/mL penicillin and 100 ug/mL streptomycin. The cells were
incubated at 37 °C in a fully humidified, 5% COas: air atmosphere.

GS was weighed and dissolved in sterile distilled water to make a stock

concentration of 100 mg'mL", and then was serial diluted in the culture medium of



cells at a ratio of 1:2 giving 8 concentrations of 5000, 2500, 1250, 625, 312.5, 156.25,
78.125 and 39.06 pg'mL™".

The MTT assay is a tetrazolium-dye based colorimetric microtitration assay.
Metabolism competent cells are able to metabolize the tetrazolium (yellow) to
formazan (blue); this color change is measured spectrophotometrically with a plate
reader. It is assumed cells that are metabolically deficient will not survive, thus the
MTT assay is also an indirect measurement of cell viability. The cells were seeded in
a 96-well plate at a density of 5,000 cells/well, and incubated for 48 hours. The
samples at various concentrations were added to the cells and incubated for 24 hours.
The test samples were removed from the cell cultures and the cells were reincubated
for a further 24 hours in fresh medium and then tested with MTT assay.

Briefly, 50 pl of MTT in PBS at 5 mg-mL™" was added to the medium in each
well and the cells were incubated for 4 hours. Medium and MTT were then aspirated
from the wells, and formazan solubilized with 200 pL of DMSO and 25 pL of
Sorensen s Glycine buffer, pH10.5. The optical density was read with a microplate
reader (Molecular Devices) at a wavelength of 570 nm. The average of 4 wells was
used to determine the mean of each point. The data were analyzed with the SoftMax
Program (Molecular Devices) to determine the ICso for each toxin sample. A dose-
response curve was derived from 8 concentrations in the test range using 4 wells per
concentration. Results of toxic compounds are expressed as the concentration of

sample required to kill 50% (ICsp) of the cells compared to controls.

3.4 Preparation of neat and GS-loaded SF/Gel blend scaffolds

The SF/Gel blend scaffolds were fabricated by weight blending ratio of SF and
Gel solution as 0/100, 30/70, 50/50, 70/30 and 100/0. The GS-loaded SF/Gel blend
scaffolds were prepared by adding 0.005 mg:mL™ GS powder into SF/Gel solutions.
0.75%v/v glutaraldehyde (GTA) solution was added to each blended solution to
crosslink for 15 min at room temperature. These solutions were poured into
polypropylene (PP) mold and freeze dried to form the GS-loaded SF/Gel blend
scaffolds. Then, methanol (MeOH) treatment was used to induce the structure of silk
fibroin to form P-sheet conformation by submerging these scaffolds into 80% MeOH

solution for 30 min and then lyophilized again.
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3.5 Morphological observation and pore size measurement
Morphological appearance of both the neat and the GS-loaded SF/Gel blend
scaffolds was observed under a JEOL JSM-5410LV Scanning Electron Microscope
(SEM). Each specimen was coated with a thin layer of gold using a JEOL JFC-1100E
sputtering device prior to observation under SEM. Pore size of these scaffolds were
measured directly from SEM images using SemAphore 4.0 software. These values
were averaged to obtain the pore size of the particular pore. More than 30 pores for

each sample group were measured

3.6 Mechanical test

The compressive modulus of both the neat and the GS-loaded SF/Gel blend
scaffolds were characterized with Instron Machine Model 5566 universal testing
machine using 1 kN load cell at room temperature. Both the neat and the GS-loaded
SF/Gel blend scaffolds were compressed at the crosshead speed of 1 mm-min™ until
the samples were around 70% deformed from their original height of ~15 mm. The
obtained data were modified by connecting with computer for control apparatus and

analyzing of the results.

3.7 Water swelling and weight loss

The water swelling and the weight loss behaviors of the neat and the GS-loaded
SF/Gel blend scaffolds were measured in a phosphate buffer solution at the
physiological temperature of 37 °C for 24 and 48 h. The measurements of each sample

were calculated according to the following equations:

Water swelling (%) =— d . 100, (1)

M. q
And Weight loss(%):'Tx 100, (2)

1
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where M is the weight of each sample after submersion in the buffer solution for 24
and 48 h, My is the weight of each sample after submersion in the buffer solution for

24 and 48 h in its dry state, and M; is the initial weight of each sample in its dry state.

3.8 Release of GS from GS-loaded SF/Gel blend scaffolds

3.8.1 Actual GS content

The actual amount of GS in the GS-loaded SF/Gel blend scaffolds was first
determined. Each scaffold was immersed in 10 mL of phosphate buffer solution. Then
1 mL of the solution was determined using a Perkin-Elmer UV-Vis spectrophotometer
at the wavelength of 570 nm. The actual amount of GS in the GS-loaded SF/Gel blend
scaffolds was then back-calculated from the resulting data against a predetermined

calibration curve.

3.8.2 GS release assay

The release characteristics of GS from the GS-loaded SF/Gel blend scaffolds
were investigated by total immersion method in the phosphate buffer solution. Each
scaffold was immersed in 10 mL of the phosphate buffer solution at 37 °C. After a
specified immersion time ranging between 0 and 48 h (2880 min), 1 mL of sample
solution was withdrawn and fresh medium was refilled. Since GS did not absorb
ultraviolet or visible light, then the ninhydrin solution was used to mix with the
sample solution. The amount of GS in sample solution was determined using a
Perkin-Elmer UV-Vis spectrophotometer at the wavelength of 570 nm. The obtained
data were calculated to determine the cumulative amount of GS released from the GS-

loaded SF/Gel blend scaffolds.

3.9 Antibacterial evaluation of GS-loaded SF/Gel blend scaffolds

The AATCC Test Method 100 (Antibacterial Finishes on Textile Materials:
Assessment of The American Association of Textile Chemists and Colorists) or
Colonies count was used to investigated the antibacterial activity of the GS-loaded
SF/Gel blend scaffolds. The pathogenic bacteria, Staphylococcus aureus,

Staphylococcus epidermidis, Micrococcus luteus, Bacillus cereus, and Pseudomonas
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aeruginosa, were used to investigate. First, 1.0 ml of culture medium (10° CFU/ml)
was added into each sample and then kept it in incubator at 37 °C for 24 h. For
control, the neat SF/Gel blend scaffolds were tested. After 24 h incubation, the
bacteria were eluted from the sample by adding 5 mL of sterilized deionized water
into the sample with vigorously shaking for 5 minutes at room temperature. Then, the
eluted solutions were made a series dilution by using 0.1% peptone. The series diluted
solutions were spread (in triplicate) on nutrient agar (NA) plate. These plates were
incubated at 37 °C for 24 h. Finally, the colonies on agar plate were photographed and
counted (range of 30-300 colonies) to evaluate the antibacterial activity. The number
of bacteria presented in the liquid was determined (on agar plate) and the percentage
of reduction was also calculated.

The number of colony was counted as the number of bacteria per sample not as
the number of bacteria per mL of neutralizing solution. The percent reduction of

bacteria (R, %) was calculated by the following equation:

100(B-A)

R (%)=—x

3)

where A is the number of bacteria recovered from the incubated treated test
sample (GS-loaded SF/Gel blend scaffolds) after 37 °C for 24 h and B is the number
of bacteria recovered from the incubated untreated test sample (neat SF/Gel blend

scaffolds) after 37 °C for 24 h.

3.10 Indirect cytotoxicity evaluation of GS-loaded SF/Gel blend
scaffolds

The indirect cytotoxicity evaluation of the GS-loaded SF/Gel scaffolds was
conducted in 24-well tissue-culture polystyrene plate (TCPS; Corning Costar®, USA)
using normal human dermal fibroblasts (NHDF; 13th passage). The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, USA),
containing 10% fetal bovine serum (FBS; Invitrogen Corp., USA), 1% L-glutamine
(Invitrogen Corp., USA) and 1% antibiotic and antimycotic formulation [containing

penicillin G sodium, streptomycin sulfate, and amphotericin B (Invitrogen Corp.,
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USA)]. The samples cut from the GS-loaded SF/Gel blend scaffolds were first
sterilized by UV radiation for ~1 h and then immersed in serum-free medium (SFM;
containing DMEM, 1% L-glutamine and 1 % antibiotic and antimycotic formulation)
for 24 h in incubation to produce extraction media. NHDF cells were separately
cultured in wells of TCPS at 8,000 cells/well in serum-containing DMEM for 24 h to
allow cell attachment. The cells were then starved with SFM for 12 h. After that, the
medium was replaced with an extraction medium and the cells were re-incubated for
24 h. The viability of the cells cultured by each of the extraction media was finally
determined  with  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide
(MTT) assay. The viability of the cells cultured by the fresh SFM was used as control.

The MTT assay is based on the reduction of the yellow tetrazolium salt to
purple formazan crystals by dehydrogenase enzymes secreted from the mitochondria
of metabolically active cells. The amount of the purple formazan crystals is
proportional to the number of viable cells. First, the culture medium in each plate was
aspirated and replaced with 25 plL/well of MTT solution at 5 mg mL™'. The plate was
further incubated for 4 h at 37 °C. The solution was then aspirated and 100 pL/well of
dimethylsulfoxide (DMSO; Sigma-Aldrich, USA) was added to dissolve the formazan
crystals. After 3 min of rotary agitation, the absorbance at the wavelength of 570 nm
representing the viability of the cells was measured using a SpectraMax M2

Microplate Reader.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Preparation of SF solution

Figure 4.1 Silk fibroin (SF).

The SF samples were prepared as potassium bromide (KBr) pellets and
characterized by using FTIR. Amide I and Il showed the characteristic peaks of
random coil and o-helix conformation at 1654.70 and 1541.03 cm™, respectively.
Amide 11T and IV were also showed at absorption peak of 1242.02 and 1070.12 em™,
respectively, which more intense in CaCly:EtOH:H,O protocol. Moreover, a broad
peak around the wave number at upper than 3000 cm™ is overlapped peak of NH and
OH stretching (Figure 4.2).
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Figure 4.2 FTIR spectrum of SF.

4.2 Indirect cytotoxicity evaluation of GS

The % survival of the cells cultured with GS at various concentrations

(compared to control) is summarized in Table 4.1.

Table 4.1 Indirect cytotoxicity of GS.

GS concentration % Cell survival
(ngmL™)
5000 68.47 + 1.25
2500 82.02 +£2.30
1250 88.36 £ 0.57
625 88.67 £ 0.70
3125 93. 764 3.71
156.25 9437+ 1.21
78.125 99.20 £ 1.15
39.06 99.75 + 1.04
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The indication of toxicity has been evaluated in 2 ranges:

a) At %cell survival = 50% will be evaluated for no toxicity

b) At %cell survival < 50% will be evaluated for toxicity with ICsg
From Table 4.1, the ICsp of GS was more than 5,000 pg-mL']. Thus, GS was non-
toxic to human dermal fibroblast cell lines over the test concentration ranged up to

5,000 pgrmL™.

4.3 Morphology and pore size of neat and GS-loaded SF/Gel blend

scaffolds

Table 4.2 Selected SEM images of the neat and the GS-loaded SF/Gel blend

scaffolds.
GS-loaded
SF/Gel SEM SEM
SF/Gel
0/100 0/100
30/70 30/70




50/50

70/30

50/50

100/0

70/30

100/0
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Table 4.3 Pore sizes of the neat and the GS-loaded SF/Gel blend scaffolds.

SF/Gel Pore sizes (um) NAAR Pore sizes (um)
SF/Gel
0/100 60.51 +13.23 0/100 77.34+23.12
30/70 68.51 £21.41 30/70 88.23 £26.97
50/50 138.18 + 54.79 50/50 93.37£27.60
70/30 84.10+29.40 70/30 82.18 +25.89
100/0 103.87 + 32.81 100/0 100.20 +27.83
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4.4 Mechanical property

Desirable scaffolds should maintain a fixed shape and have enough mechanical
strength in order to provide sufficient free space for cell attachment, proliferation and
differentiation when cultured with cells in vitro or implanted in vivo. Compressive test
is widely accepted to evaluate the mechanical strength of scaffolding materials. This
property is important because it is closely associated with shape-retention ability in
practical operations and applications. For this purpose, the compressive modulus of
these scaffolds was investigated. The compressive modulus was calculated in the 2-6
%strain, since the extent is small in the first region of scaffolds compressive
deformation that considered as elastic region (Zhou, et al., 2005). The compressive
modulus of both the neat and the GS-loaded SF/Gel blend scaffolds at the blending
ratio of 0/100, 30/70, 50/50, 70/30 and 100/0 is shown in Figure 4.3. The compressive
modulus of the neat SF/Gel blend scaffolds at the blending ratio of 0/100, 30/70,
50/50, 70/30 and 100/0 was ~0.81, ~0.75, ~0.70, ~0.44, and ~0.15 MPa, respectively.
While the compressive modulus of the GS-loaded SF/Gel blend scaffolds at the
blending ratio of 0/100, 30/70, 50/50, 70/30 and 100/0 was decreased to ~0.58, ~0.39,
~0.21, ~0.16, and ~0.12 MPa, respectively. From these results, increasing SF content
decreased the compressive modulus of scaffolds. In addition, the addition of GS into
scaffolds caused the compressive modulus of scaffolds to decrease. These results
could be explained from Table 4.2. Since the neat and the GS-loaded Gel scaffolds
had small pore size and good arrangement of porous structure so this might affect the
better dispersion of force applying into samples. Moreover, the neat and the GS-
loaded SF scaffolds showed non-uniform porous structure that caused the
compressive modulus to decrease. Thus, it could be concluded that the pore size and
the distribution of porous structure might affect the mechanical properties of these
scaffolds.
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Figure 4.3 Compressive modulus of the neat and the GS-loaded SF/Gel blend
scaffolds at the blending ratio of 0/100, 70/30, 50/50, 30/70, and 100/0 (n = 5).

4.5 Water swell and weight loss
The ability of a scaffold to absorb and retain exudates in its pore channels is

very important property of a functional scaffold in actual use, as exudates contain
cells and various biological entities which are essential for tissue regeneration within
the scatfolds. The water swelling and the weight loss behaviors of both the neat and
the GS-loaded SF/Gel blend scaffolds after submersion in phosphate buffer solution
for 24 and 48 h at 37 °C were investigated and the results are shown in Figure 4.4 and
4.5. The water swelling of the neat and the GS-loaded SF/Gel blend scaffolds is
shown in Figure 4.4. The water swelling of the neat SF/Gel blend scaffolds at the
blending ratio of 0/100, 30/70, 50/50, 70/30 and 100/0 after submersion for 24 h was
~944, ~1265, ~960, ~1068 and ~1076%, respectively. At 48 h, the value increased to
~1183, ~1342, ~1217, ~1400 and ~1192%, respectively. While the water swelling of
the GS-loaded SF/Gel blend scaffold at the blending ratio of 0/100, 30/70, 50/50,
70/30 and 100/0 after submersion for 24 h was ~1133, ~1035, ~1199, ~1279 and
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~1106%, respectively. At 48 h, the value increased to ~1347, ~1610, ~1295, ~1513
and ~1218%, respectively.

The weight loss of the neat and the GS-loaded SF/Gel blend scaffolds is shown
in Figure 4.5. The weight loss of the neat SF/Gel blend scaffolds at the blending ratio
of 0/100, 30/70, 50/50, 70/30 and 100/0 after submersion for 24 h was ~11, ~12, ~7,
~2 and ~2%, respectively. At 48 h, the value increased to ~53, ~30, ~12, ~7 and ~5%,
respectively. While the weight loss of the GS-loaded SF/Gel blend scaffold at the
blending ratio of 0/100, 30/70, 50/50, 70/30 and 100/0 after submersion for 24 h was
~14, ~12, ~8, ~9 and ~4, respectively. At 48 h, the value increased to ~835, ~56, ~25,
~15 and ~10%, respectively.

From these results, both the water swelling and the weight loss increased with
increasing submersion time. The increase in the submersion time caused the more
water molecule to diffuse into the scaffolds leading to increase both the water
swelling and the weight loss. Moreover, the addition of GS into scaffolds caused both
the water swelling and the weight loss to increase. Because GS molecules which are

good water soluble are highly diffuse into phosphate buffer solution.
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Figure 4.4 Water swelling of (a) the neat and (b) the GS-loaded SF/Gel blend
scaffolds in phosphate buffer solution for 24 and 48 h.
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4.6 Release of GS from GS-loaded SF/Gel blend scaffolds

The actual amounts of GS in the GS-loaded SF/Gel blend scaffolds were
determined prior to investigating the release characteristics of GS from these samples
and the results are shown in Table 4.4. The results showed that the actual amount of
GS in the GS-loaded SF/Gel blend scaffold at the blending ratio of 0/100, 70/30,
50/50, 30/70, and 100/0 was ~95, ~92, ~98, ~94, and ~98% (based on the amounts of
GS initially present in the GS-loaded SF/Gel blend scaffolds), respectively. These
values were later used to calculate the cumulative amount of GS released from these
the GS-loaded SF/Gel blend scaffold.

The release characteristics of GS from the GS-loaded SF/Gel blend scaffolds
were investigated by the total immersion method over a period of 2880 min in the
phosphate buffer solution. The cumulative release profiles of GS from the GS-loaded
SF/Gel blend scaffolds were determined as the percentage corresponding to the
weight of GS released divided by the actual weight of GS in the sample and the
results are shown in Figure 4.6. In all cases, a gradual increase in the amount of GS
released from these scaffolds was observed and more gradually increased afterwards.
The cumulative amount of GS released seemed to plateau towards the end of the
observational time period. The maximum amount of GS released from the GS-loaded
SF/Gel blend scaffolds at the blending ratio of 0/100, 70/30, 50/50, 30/70, and 100/0
was ~80, ~73, ~64, ~61, and ~53%, respectively. The increasing amount of SF caused
the cumulative amount of GS released from these scaffolds to decrease. These results
might be explained by the weight loss results. Increasing the SF content decreased the

weight loss of scaffolds.
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Table 4.4 Actual amounts of GS incorporated in the GS-loaded SF/Gel
scaffolds
GS-loaded SF/Gel blend Actual amount of GS based on the initial
scaffolds amount of GS loaded (%)
0/100 05.16 £5.33
30/70 92.12+3.16
50/50 98.20+3.16
70/30 9415+ 5.47
100/0 98.20 = 3.82
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Figure 4.6 Cumulative release profile of GS from the GS-loaded SF/Gel blend

scaffolds, reported as the percentage of the weight of GS released divided by the

actual weight of GS in the samples, by total immersion method in phosphate buffer

solution at the physiological temperature of 37 °C.
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4.6 Antibacterial evaluation of GS-loaded SF/Gel blend scaffolds

Five candidate bacteria (i.e., P. aeruginosa as Gram-negative and S. aureus, S.
epidermidis, M. luteus, and B. cereus as Gram-positive) were used to evaluate the
antibacterial activity of the GS-loaded SF/Gel blend scaffolds. The percentage of
inhibition or colony count provides a quantitative procedure for evaluation of the
antibacterial activity of the GS-loaded SF/Gel scaffolds and the results are shown in
Table 4.5. According to these results, the neat SF/Gel blend scaffolds (i.e., control)
showed no activity against the growth of all bacteria. The GS-loaded SF/Gel blend
scaffolds at blending ratio of 0/100 showed high activity against the growth of S.
aureus, S. epidermidis, M. luteus, B. cereus, and P. aeruginosa with percent reduction
of 99.94, 99.99, 100.00, 84.49, and 99.12, respectively. The GS-loaded SF/Gel blend
scaffolds at blending ratio of 50/50 showed high activity against the growth of .
aureus, S. epidermidis, M. luteus, B. cereus, and P. aeruginosa with percent reduction
of 99.99, 99.99, 99.99, 99.99, and 99.95, respectively. In addition, the GS-loaded
SF/Gel blend scaffolds at blending ratio of 100/0 showed high activity against the
growth of S. aureus, S. epidermidis, M. luteus, B. cereus, and P. aeruginosa with
percent reduction of 99.99, 100.00, 99.88, 99.99, and 99.98, respectively. From these
results, these scaffolds had high antibacterial activity against S. auwreus, S.
epidermidis, M. luteus, B. cereus, and P. aeruginosa indicating these scaffolds could

be used as wound dressings.
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Table 4.5 Antibacterial activity of the GS-loaded SF/Gel blend scaffolds (n = 3).

Culture | SF/Gel CFU/mL (mean £ S.D.) perce"(ﬁ/;eR‘;“C“O“
100/0 Control 6.8);10: +0.9x1 O:
Treatment 3.9x107 £+ 1.5x10 99.94
S. aureus 50/50 Control 6.9x10% £ 1.1x10°
Treatment I0.0E +17.0 ; 99.99
Control 1.6x10°+0.1x10
T 4.0+ 6.0 99.99
L00/0 |Control 5.40x1 oj +0.3x1 28
Treatment 2.0x10 8:1: 0.3x10 ; 99.99
. . Control 6.30 x10° £+ 0.2x10
S. epidermidis | 50/50 Treatmont 30260 99.99
o/100 |Control 5.1x10° £ 0.4x10°
Treatment 0.0+0.0 100.00
100/0 Control 5.8x1097:t 5.0 x10°
Treatment 5.0x109 + 0.4x1 0; 99.12
) Control 4.0x10" +3.5x10
hugrugmose | SV Treatment 1.9x10° + 0.1x10° 99,95
o/100 |Control 5.1x102¢ 5.5x10;’
Treatment 3.5x10°+0.7x10 99,98
100/0 Control 8.3x101 + 0.2x1 0:
Treatment 9.5x1 0? + 0.2);107 100.00
Control 8.5x10" = 0.5x10
M. luteus I0/a0 Treatment 1702120 99.99
o/100 LControl 9.3x107 + 0.4x10’
Treatment 0.0+£0.0 99.88
L00/0 | Control 5.0xlojio.1x10f
Treatment 6.5x1 Osi 2.3x10 ; 84.49
Control 3.9x10°+1.7x10
W 30750 Treatment 10.L0£17.0 99.99
o/100 |_Control 6.3x10% + 0.1x10°
Treatment 27.0+46.0 99.99
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4.7 Indirect cytotoxicity evaluation of GS-loaded SKF/Gel blend

scaffolds

To evaluate both the neat and the GS-loaded SF/Gel blend scaffolds could be
used as wound dressings, indirect cytotoxicity evaluation was carried out on these
scaffolds. The GS-loaded SF/Gel blend scaffolds were evaluated for their
cytotoxicity. The viability of NHDF cells cultured with the extraction media from
these samples in comparison with that of the cells cultured with the fresh culture
medium is shown in Figure 4.7. The viability of the cells cultured with all the
extraction media from the GS-loaded SF/Gel blend scaffolds at blending ratio of
0/100, 30/70, 50/50, 70/30, and 100/0 was ~103, ~117, ~96, ~88, and 59%, indicating
that all the GS-loaded SF/Gel blend scaffolds were proven non-toxic to NHDF cells
except the GS-loaded SF/Gel blend scaffolds at blending ratio of 100/0. Thus, these
scaffolds might have potential use for wound dressings except the GS-loaded SF/Gel
blend scaffolds at blending ratio of 100/0.
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Figure 4.7 Indirect cytotoxicity evaluation of the GS-loaded SF/Gel scaffolds (n = 3).
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CHAPTERS
CONCLUSION

In this study, both the neat the GS-loaded SF/Gel blend scaffolds were
successfully fabricated by freeze-drying method. GS was loaded into the neat SF/Gel
blend scaffolds for use as wound dressings. The effect of SF/Gel blending ratio (i.e,
0/100, 30/70, 50/50, 70/30 and 100/0) in scaffolds on the morphology, water swelling,
weight loss and release study was investigated. From SEM results, both the neat and
the GS-loaded SF/Gel blend scaffolds had the interconnected porous structure. The
pore size of the neat SF/Gel blend scaffolds ranged between 60 and 138 pm, while
that of the GS-loaded SF/Gel blend scaffolds ranged between 77 and 100 pm.
Increasing SF content decreased the compressive modulus of scaffolds. Moreover, the
addition of GS into scaffolds caused the compressive modulus of scaffolds to
decrease. The increase in the submersion time caused the more water molecule to
diffuse into the scaffolds leading to increase both the water swelling and the weight
loss. The addition of GS into scaffolds caused both the water swelling and the weight
loss to increase. Because GS molecules which are good water soluble are highly
diffuse into phosphate buffer solution. The cumulative amounts of GS released from
the GS-loaded SF/Gel blend scaffolds decreased with an increase of SF content in
scaffolds. All scaffolds showed high activity against the growth of S. aureus, S.
epidermidis, M. luteus, B. cereus, and P. aeruginosa. Lastly, all the GS-SF/Gel blend
scaffolds were proven non-toxic to NHDF cells except for the GS-loaded SF/Gel
blend scaffolds at blending ratio of 100/0.
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